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1 INTRODUCTION

In this article, we review in detail the theory and methodology of transition path
sampling. This computational technique is an importance sampling of reactive tra-
jectories, the rare but important dynamical pathways that bridge stable, macroscopic
states. We discuss the statistical view of dynamics underlying the method. Within
this perspective, ensembles of trajectories can be sampled and manipulated in close
analogy to standard techniques of statistical mechanics. Because transition path
sampling does not require foreknowledge of reaction mechanisms, it is a natural
tool for studying complex dynamical structures of high-dimensional systems at the
frontiers of physics, chemistry, and biology.

The dynamics of many such systems involve rare but important transitions be-
tween long-lived stable states. These stable states could be, for example, distinct
inherent structures of a supercooled liquid, reactants and products of a chemical re-
action, or native and denatured states of a protein. In each case the system spends
the bulk of its time fluctuating within stable states, so that transitions occur only
rarely. In order to understand such processes in detail, it is necessary to distinguish
reaction coordinates, whose fluctuations drive transitions between stable states, from
orthogonal variables, whose fluctuations may be viewed as random noise. In prin-
ciple, computer simulations can provide such insight. Because the times separating
successive transitions are long, however, conventional simulations most often fail to
exhibit the important dynamics of interest.

A straightforward approach to such problems is to follow the time evolution of the
system with molecular dynamics simulations until a reasonable number of events has
been observed. The computational requirements of such a procedure are, however,
impractically excessive for most interesting systems. For instance, a specific water
molecule in liquid water has a lifetime of about 10 hours, before it dissociates to
form hydronium and hydroxide ions. Thus, only a few ionization events occur every
hour in a system of, say, 100 water molecules. Since the simulation of molecular
motions proceeds in time steps of roughly 1 fs, approximately 10'® steps would be
required to observe just one such event. Such a calculation is beyond the capabilities
of the fastest computers available today and in the foreseeable future.

A different strategy, often used to study chemical reactions, is to search for the
dynamical bottlenecks the system passes through during a transition. For a simple
system, with an energy landscape as depicted in the left panel of Fig. 1, this can
often be accomplished by enumerating stationary points on the potential energy
surface [1, 2]. Neglecting the effects of entropy, local minima exemplify stable (or
metastable) states. Saddle points exemplify transition states, activated states from
which the system may access different stable states via small fluctuations. One can
often infer the mechanism of a reaction by comparing stable states and transition
states. Transition rates can subsequently be calculated by computing the reversible
work to reach the transition state from a stable state, and then initiating many
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fleeting trajectories from the transition state [3].

Figure 1: Prototypical potential energy surface of a simple system (left panel) and of a
complex system (right panel). In a simple, low-dimensional system dynamical bottlenecks
for transitions between long lived stable states most often coincide with saddle points on the
potential energy surface. Locating these stationary points reveals the reaction mechanism.
In a typical complex system the potential energy surface is rugged and has countless local
minima and saddle points. Nevertheless, there can be well-defined long-lived stable states
and rare transitions between them. Such transitions can occur via a multitude of different
transition pathways.

The situation is dramatically different for complex systems, classified by Leo
Kadanoff as having “many chaotically varying degrees of freedom interacting with
one another” [4]. The right panel of Fig. 1 shows how one might envision the
energy landscape of such a system. As in the simple system, long-lived stable states
are separated by an energetic barrier. But the stationary points exemplifying this
barrier comprise only a small fraction of the total set of saddle points, as is generally
the case for complex systems. An incomplete enumeration of stationary points is
thus insufficient to locate transition states of interest. One might hope instead to
guide the search for transition states using physical intuition, in effect postulating
the nature of reaction coordinates. But these variables can be highly collective, and
therefore difficult to anticipate. In the case of electron transfer, for instance, the
relevant coordinate is an energy gap that depends on many atomic coordinates. A
specific value of the energy gap can be realized in many different ways. Similarly,
reaction coordinates for protein folding are expected to depend on many protein and
solvent degrees of freedom.

In order to overcome these problems inherent to the study of rare events in
complex systems, we have developed a computer simulation technique based on
a statistical mechanics of trajectories [5]. In formulating this method, we have
recognized that transitions in complex systems may be poorly characterized by a
single sequence of configurations, such as a minimum energy pathway. Indeed, a large
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set of markedly different pathways may be relevant. We term the properly weighted
set of reactive trajectories the transition path ensemble. Defining this ensemble does
not require prior knowledge of a reaction coordinate. Rather, it is sufficient to specify
the reactants and products of a transition. This is a crucial feature of the method,
since knowledge of a reaction coordinate is usually unavailable for complex systems.

To sample the transition path ensemble we have developed efficient Monte Carlo
procedures [6, 7] that generate random walks in the space of trajectories. As a result
of this “transition path sampling,” one obtains a set of reactive trajectories, from
which the reaction mechanism (or mechanisms) can be inferred. Since trajectories
generated in the transition path sampling method are true dynamical trajectories,
free of any bias, the ensemble of harvested paths can also be used to calculate reaction
rates. The high efficiency of these algorithms has significantly widened the range of
processes amenable to computer simulation. As was demonstrated in applications
of the methodology [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26], the spectrum of tractable problems now includes chemical reactions
in solution, conformational transitions in biopolymers, and transport phenomena in
condensed matter systems.

In this article, we present the foundations and methodology of transition path
sampling comprehensively, including details important for its implementation. Read-
ers interested in a broad overview of the perspective exploited by the method, and
several of its applications, are encouraged to consult a recent review [18]. In the
following sections, we first discuss the theoretical basis of transition path sampling,
namely a statistical mechanics of trajectories. We then describe how reactive tra-
jectories may be efficiently sampled, and subsequently analyzed. The practical sim-
plicity of the method is emphasized by outlining essential algorithms in boxed sum-
maries. Computer code exemplifying the application of these algorithms can be
downloaded from the website http://gold.cchem.berkeley.edu/~tpath.

Applications of the method are not discussed separately in this review, but are
instead used to exemplify important aspects of the method. In particular, proton
transfer in the protonated water trimer as shown in Fig. 2 serves as an illustration for
many of the techniques discussed in this article. Details of this process are discussed
in the caption of Fig. 2.

2 DEFINING THE TRANSITION PATH ENSEMBLE

In an ergodic system, every possible trajectory of a particular duration occurs with
a unique probability. This fact may be used to define a distribution functional for
dynamical paths, upon which the statistical mechanics of trajectories is based. For
example, with this functional one can construct partition functions for ensembles
of trajectories satisfying specific constraints, and compute the reversible work to
convert between these ensembles. In later sections we will show that such manipula-
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Figure 2: The protonated water timer consists of three water molecules and one excess
proton. In the equilibrium configuration of this cluster the excess proton (dark gray) is bound
to a central water molecule forming a well defined hydronium ion (configuration A) [14].
Proton transfer from this central water molecule to one of the other ones can occur through
two different transition state regions denoted by T'S; and TS, in the figure [10]. In the final
state (configuration B) a different water molecule holds the excess proton. The transfer of
the proton shown in dark grey requires rearrangement of the cluster’s hydrogen bonding
structure. The angles ¢ and 5 indicated in the upper transition state configuration, 7'Ss,
are used to define an order parameter characterizing the stable states A and B. The distance
r1 and ry indicated in the lower transition state configuration are the distances between the
transferring proton and the donating and accepting water molecule, respectively.
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tions may be used to compute transition rate constants. In this section we derive the
appropriate path distribution functionals for several types of microscopic dynamics,
focusing on the constraint that paths are reactive, i.e. that they begin in a particular
stable state, A, and end in a different stable state, B.

2.1 Dynamical Path Probability

Let us denote a trajectory of length 7 by z(7). While in principle the time evolution
of the system is continuous, it is convenient to discretize time and represent a trajec-
tory by an ordered sequence of states, z(7) = {zo, ZAt, T2A¢, - - -, z7}. Consecutive
states, or time slices, are separated by a small time increment, At. Accordingly, such
a representation consists of L = 7 /At + 1 states, or time slices. Each of the states
z along the trajectory contains a complete set of variables describing the system.
For a system that evolves according to Newtonian dynamics, for instance, the state
z = {r,p} consists of the coordinates, r, and momenta, p, of all particles. For a
system that evolves according to the rules of Brownian dynamics, = denotes only
the configuration of the system. A trajectory connecting stable states A and B is
schematically depicted in Fig. 3.

The statistical weight, P[z(7)], of a particular trajectory z(7 ), depends on the
distribution of initial conditions and on the specific propagation rules describing the
time evolution of the system. Consider, for example, a Markovian process in which
state z; evolves into state z;a¢ over a time At with probability p(z; — Ti1ar)- In
this case the dynamical path probability can be expressed as a product of short-time
transition probabilities,

T/At-1

Pla(T)] = plwo) I plziae = zaiiar)- (1)
i=0

Here, p(zo) denotes the distribution of states xy serving as starting points for tra-
jectories (7). For instance, these initial conditions might be distributed according
to the canonical ensemble, p(zo) ox exp{—BH (z)}, where H(z) is the Hamiltonian
of the system. Both p(zo) and p(wiar — T(i11)a¢) are assumed to be normalized.

2.2 Reactive Path Probability

Since we are interested only in reactive trajectories connecting A and B, we now
restrict the path ensemble to trajectories beginning in region A at time zero and
ending in region B at time 7,

Pap[e(T)] = ha(zo)Plz(T)lhs(x7)/Za(T)- (2)

Here, h4(z) and hp(z) are the population functions, or characteristic functions, of
regions A and B, respectively. The function h4(z) equals 1 if its argument, z, lies in
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Figure 3: A transition pathway x(7) = {zo,ZA¢,-..,ZjA¢, ..., Z7} connecting stable re-
gions A and B.

A, and vanishes otherwise. The characteristic function hAp(z) is similarly defined. In
most cases h(z) and hp(z) depend only on the configuration part r of state z, but
situations may arise in which it is advantageous to introduce characteristic functions
that depend on momenta as well. In practical applications, the stable regions A and
B must be characterized carefully. We will return to this issue in Sec. 2.6.

In equation (2), Zap(T) is a factor normalizing the distribution of trajectories,

Zag(T) = / Dx(T) ha(wo)Pla(T)lhp(2T)- 3)

The fact that Z4p(7T) has the form of a partition function is important for the cal-
culation of rate constants, as we will discuss later. The notation [ Dz(T), borrowed
from the theory of path integrals, indicates a summation over all pathways z(7).
For a discretized path this summation corresponds to a integration over states at
each time slice of the path.

The probability functional from Equ. (2) is a statistical description of all path-
ways of length ¢ connecting reactants with products. We call this set of appropriately
weighted paths the transition path ensemble. Pathways x(7) which do not begin in
A or do not end in B have zero weight in this ensemble. Reactive trajectories, on
the other hand, may have a nonvanishing probability, depending on the dynamical
path weight P[z(T)].

The perspective exploited by transition path sampling, namely a statistical de-
scription of pathways with endpoints located in certain phase space regions, was
first introduced by Pratt [27]. He described stochastic pathways as chains of states,
linked by appropriate transition probabilities. Others have explored similar ideas
and have constructed ensembles of pathways using ad-hoc probability function-
als [28, 29, 30, 31, 32, 33, 34, 35]. Pathways found by these methods are reactive,
but they are not consistent with the true dynamics of the system, so that their util-
ity for studying transition dynamics is limited. Trajectories in the transition path
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ensemble from Equ. (2), on the other hand, are true dynamical trajectories, free
of any bias by unphysical forces or constraints. Indeed, transition path sampling
selects reactive trajectories from the set of all trajectories produced by the system’s
intrinsic dynamics, rather than generating them according to an artificial bias. This
important feature of the method allows the calculation of dynamical properties such
as rate constants.

2.3 Deterministic Dynamics

Consider a system whose time evolution is described by a set of ordinary differential

equations
& =T(z), (4)

where £ indicates the time derivative of z and I'(z) is a function of z only. The
time evolution of such a dynamical system is deterministic in the sense that initial
conditions zy completely determine the trajectory for all times. Newton’s equations
of motion, for instance, have this form:

OH (r,p) P 0H (r,p)

- Op N or (5)
Other examples for this type of dynamics include the equations of motion based
on the extended Lagrangian of Car and Parrinello [36] and equations of motion for
various thermostatted systems [37]. The equations of motion for hydrodynamic flow
can also be cast in this form [38].
Solving the equations of motion (4) yields the propagator ¢;, which maps the
initial state of the system to that at time ¢:

Tt = ¢i(wo)- (6)

Because this mapping takes the state x; into exactly one state z;ya; at time At
later, the short time transition probability is represented by a Dirac delta function:
(Tt = Tirat) = 6[Tirar — dat(w)]- (7)

Note that here the argument of the delta function is a high-dimensional vector.
Accordingly, the delta function of the above equation is actually a product of delta
functions, one for each coordinate. The reactive path probability for a deterministic
trajectory is therefore

T/At-1
Paple(T)] = plzo)ha(@o) [ Olwutiae — dar(wiar)he(@r)/Zan(T).  (8)
i=0

The normalization factor Z45(7) is given by

Zag(T) = /dﬂﬁo p(zo)ha(zo)hp(zT), 9)
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where integrations over the states along the path have been carried out at all times
except time zero.

2.4 Stochastic Dynamics

Often, the analysis of molecular systems can be simplified by replacing certain de-
grees of freedom by random noise. With this replacement, the remaining degrees
of freedom z evolve according to a Langevin equation. In the simplest case, the
random noise is uncorrelated in time, giving

. D
r o= —
m
p = F(r)—vw+7R. (10)

Here, F(r) is the force derived from the potential energy V(r). The friction constant
~v and the random force R are related through the fluctuation dissipation theorem:
(R(t)R(0)) = 2m~vykpTé(t), where T is the temperature and kg is Boltzmann’s con-
stant. The random thermal noise R compensates for the energy dissipated by the
frictional term —yp. Because we focus on finite segments of trajectories, the treat-
ment of noise that is correlated in time is awkward within the specific methodology
presented in this article. But even in this case, every finite trajectory of the pri-
mary variables has a well-defined probability, and transition path sampling can in
principle be carried out with sufficient generalizations.

Various integration algorithms have been derived to solve teh equation of motion
(10) over small time increments At [39]. Applying these operations repeatedly yields
stochastic trajectories of arbitrary length. Typically, these integration algorithms
have the form

Tirot = Tt + 05 + 0T R. (11)

While the systematic part dzg is fully determined by z;, the random part dzg is
drawn from a distribution w(dzg). For Langevin dynamics w(dzg) is a multivariate
Gaussian distribution as derived by Chandrasekhar [40]. The random component of
the small time step propagator “smears out” the time evolution of the system such
that many different states are accessible starting from the same initial state. The
single step transition probability is given by

a(SLIIR
axt-}—At

p(zt = Trea) = w (0zR) , (12)

where the Jacobian on the right hand side arises from the variable transformation
from random displacement dzg to phase space point z;1as. For the most widely
used integration algorithm [39] this Jacobian is unity, simplifying the path weight
considerably [6]. Furthermore, the transition probability derived from the Langevin
equation is normalized, and it conserves the canonical distribution as required by
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the fluctuation-dissipation theorem [6]. Concatenating transition probabilities of
Equ. (12) as in Equ. (1) and imposing boundary conditions as in Equ. (2) we obtain
the reactive path probability

T/At-1

Papla(T)] = plzo)ha(zo) [ wlz@iyar — ziae — 6zs)hp(@r)/Zap(T). (13)
=0

In contrast to deterministic pathways, stochastic trajectories are not completely
determined by the initial state zo. Accordingly, the probability functional Pap[z(T)]
explicitly depends on the entire path z(7).

2.5 Monte Carlo Dynamics

The dynamics of some complex systems, such as spin systems, lattice gases, and
certain models of proteins, are most naturally studied using Monte Carlo simula-
tions [8, 41, 42, 43]. Such simulations proceed stepwise in a biased random walk
through the space of possible states. In this walk, a trial state is generated from the
current state of the system, and is accepted with a probability that depends on the
relative weights of the trial state and original state in the ensemble of interest. If the
trial state is not accepted, then the original state is retained. The acceptance prob-
ability is constructed so that every state z is visited with a frequency proportional
to its equilibrium weight p(z) [44]. This procedure is called importance sampling,
because the most important states, those with the largest weight, are visited most
often. States with negligible weight are rarely observed.

Various acceptance rules have been devised for importance sampling, the simplest
of which is the so-called Metropolis algorithm [45]. In this case

P (xr = Tipar) = w (@ = Tegpar) + 6 (T — Zirar) Q(z4), (14)
where ( )
. T
w (s = Tpyar) = N (T = Tppae) minfl, ptijLAt] (15)
p(t)
is the probability for an accepted trial move from z; to z; 1A+ and
Q(r)=1- /dm'w (z — ') (16)

is the total rejection probability for a move starting from z. Trial states are gen-
erated by selecting a random displacement from the distribution 7 (z; = z¢1A¢),
which is assumed to be symmetric, i.e., n(z — z') = n(z’ — z). In simple Monte-
Carlo simulations n(z — z') is a rapidly decaying function of the magnitude of the
displacement, but more complicated choices are sometimes useful [44]. The min-
function in Equ. (15) returns the smaller of its arguments. Thus, a trial state is
always accepted if it has a larger weight than the original state, but is rejected with
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a finite probability if its weight is lower. The transition probability from Equ. (14)
is normalized and conserves the equilibrium distribution p(x).

Concatenating Monte Carlo transition probabilities according to Equ. (1) one
obtains the probability of a particular stochastic path 2(7") generated in a Metropolis
Monte Carlo simulation. The time variable ¢ describing the progress of this stochastic
process is artificial. This Monte Carlo time can be approximately mapped to a
physical time scale by comparing known dynamical properties such as transport
coefficients [8, 41].

2.6 Defining the Initial and Final Region

Transition path sampling does does not require knowledge of a reaction coordinate
describing the progress of a transition through the dynamical bottleneck region. It
is only necessary that the initial and final states of the transition are characterized
carefully. While this requirement is considerably less stringent, its satisfaction is
crucial. Typically, regions A and B are defined by distinct ranges of a low dimen-
sional order parameter q. Identifying an order parameter that truly discriminates
between A and B can be quite challenging.

A successful order parameter must satisfy several criteria. First, regions A and
B must be large enough to accommodate typical equilibrium fluctuations in their
corresponding basins of attraction. The basin of attraction of a specific stable state
consists of all configuration from which trajectories relax into that stable state. If
this first criterion is not met, important transition pathways will likely be overlooked.
Second, and more importantly, the regions A spanned by h4(z) and hp(z) should
be located entirely within the corresponding basins of attraction. In other words,
region A should not overlap with the basin of attraction of B, and vice versa. If
this second criterion is not met, transition path sampling may harvest non-reactive
trajectories. This situation is illustrated in Fig. 4, which shows two pathways on
a free energy surface w(q,q'). While both pathways begin in A and end in B, only
one of them actually crosses the transition state surface (dashed line). Although
the other path (solid line) also begins with hy = 1, its initial point =" is in fact
located in the basin of attraction of state B. Thus, this pathway does not exhibit a
true transition.

Suitable definitions of regions A and B may require considerable trial and error.
Fortunately, it is straightforward to diagnose an unsuccessful order parameter For
instance, most short trajectories initiated from the state :vgl) will quickly visit states
with values of ¢ characteristic of state B. In other words, the probability to relax
into B is close to one. (This relaxation probability plays an important role in the
analysis of transition pathways, as will be discussed in detail later.) In contrast,
the probability to relax into B from :c(()Q) is negligible. When relaxation probabilities
indicate that definitions of A and B do not exclude nonreactive trajectories, the
nature and/or ranges of the order parameter must be refined.
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q

Figure 4: Contour lines of a free energy landscape w(q, ') in which the coordinate ¢ fails
to unambiguously separate the basins of attraction of the stable states. Regions A and B
(gray) accommodate most equilibrium fluctuations in the respective stable states, but the
overlap of A with the basin of attraction of the final state leads to pathways which are not
truly reactive. Although the trajectory depicted as a solid line with initial state a:(()l) starts
in A and ends in B it does not cross the transition state surface (dotted line) separating the
basins of attraction. The trajectory depicted as a dashed line with initial condition x(()z), on
the other hand, starts in the basin of attraction of A and ends in the basin of attraction of
B. With the definition of the initial region A and the final region B depicted in the figure
the transition path sampling algorithm is most likely to sample non-reactive trajectories
rather than reactive ones.
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3 SAMPLING THE TRANSITION PATH ENSEMBLE

Transition path sampling is an importance sampling of trajectories, akin to the
importance sampling of configurations described in Sec. 2.5. Specifically, it is a
biased random walk in the space of trajectories, in which each pathway is visited in
proportion to its weight in the transition path ensemble. Because trajectories that
do not exhibit the transition of interest have zero weight in this ensemble, they are
never visited. In this way, attention is focused entirely on the rare but important
trajectories, those that are reactive.

We accomplish the random walk through trajectory space as follows: Beginning
with a trajectory z(%)(T) (here, the superscript ’(0)’ stands for ”old”) whose weight
Pap[z(®(T)] in the transition path ensemble is nonzero, we generate a new tra-
jectory 2™ (7). Using the terminology of conventional Monte Carlo techniques we
call this procedure to create a new trajectory a “trial move”. Efficient methods
for such generation of new trajectories by modifying existing ones will be discussed
in the following sections. We next accept the newly generated path with a certain
probability. There are many ways to construct an appropriate acceptance probabil-
ity. The simplest is based on detailed balance of moves in trajectory space. This
criterion requires that the frequency of accepted moves from z(©) (T) to ™ (T is
exactly balanced by the frequency of reverse moves:

Paple® (T 7[2)(T) = &(T)] = Papla™ ()] #[™(T) = 2(T)),  (17)

where, w[z(T) — '(T)] is the conditional probability to make a move to from z(7)
to 2'(T) given an initial path (7). In our case, w[z(7) — z'(T)] is a product of the
probability to generate z'(T) from z(7), Pyen[z(T) — z'(T)], and the probability
Pooc[z(T) — 2'(T)] to accept the trial path z'(7T):

7[z(T) = 2'(T)] = Paen[(T) = &'(T)] X Pacelx(T) — ' (T)]. (18)

(From the detailed balance condition one obtains a condition for the acceptance
probability:

Pace[#(T) = 2™(T)] _ Pap[z™)(T)] Pgen [z (T) — 2(9(T)]

= . 19
Poecl o (T) = 201(T)] ~ Pasle® (T)] By @®(T) > (D)
This condition can be satisfied conveniently using the Metropolis rule [45]:
(n) (n) (0)
Praale®(T) = £ (7)] = min |1, 2AEE DN Peene(T) > AT

" Pap[z)(T)] Pyen[20)(T) — z()(T)]

Since the old trajectory z()(T) is reactive, i.e., hA[w(()o)] =1 and hB[:v(;)] =1, the
acceptance probability can be written as

Pacc[:c(o) (T) = =™ (7)) = hA[a:(()n)]hB[a:g?)]
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P (T)] Paen[=™(T) = 2°)(T)]
Plz)(T)] Pgen[;E(O) (T) = (7)) |’

X min (1, (21)

where x(()n) and :1:%1-1) are the first and last state of the new trajectory, respectively.

An acceptance probability of the form min[l, o] may be realized by accepting a
new pathway unconditionally when o > 1, and with probability a when o < 1.
A simple way to implement this rule is to accept a trial move whenever a random
number ¢ drawn from a uniform distribution in the interval [0,1] is smaller than
a. According to Equ. (21), only new pathways connecting regions A and B have a
nonzero acceptance probability. If a new pathway does not begin in A or end in B
it is rejected. A summary of the algorithm is given in Scheme 1.

1. Generate a new pathway z(®) (7) from the existing one, z(©) (7),
with generation probability Pyep, (2 (T) — z™)(T)).

2. Accept or reject the new pathway according to a Metropolis ac-
ceptance criterion obeying detailed balance with respect to the
transition path ensemble Pag[z(T)].

3. If the new trajectory is accepted, it becomes the current one. Oth-
erwise the old trajectory is retained as the current trajectory again.

4. Repeat starting from 1.

Scheme 1: Metropolis Monte Carlo sampling algorithm for transition pathways.

An important feature of the acceptance probability in Equ. (21) is that a new
pathway with lower statistical weight than the old one is accepted with finite prob-
ability. As a result, “barriers” in path space can be surmounted, facilitating “relax-
ation” towards the most important regions in path space. Thus, it is not essential
that the first reactive trajectory have high statistical weight.

In order to implement the algorithm described above, one must be able to gen-
erate trial paths from existing ones. While in principle there are a great many ways
to do this, the efficiency of the algorithm depends crucially on the nature of trial
moves. Specifically, it is important that the average acceptance probability for gen-
erated paths not be too small. For transition path sampling, satisfying this condition
requires that trial paths have a reasonable weight P[z(7)] in the dynamical path
ensemble, as well as a reasonable chance of connecting states A and B.

Desirable trial trajectories for transition path sampling have significant dynam-
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ical weights, P[z(T)], and thus resemble natural trajectories. The simplest way to
obtain such paths is to apply the very same propagation rules that define the natu-
ral dynamics of the system. We have employed this strategy to construct two basic
types of trial moves, which we call “shooting” and “shifting.” In both cases, new
trajectories are obtained by applying dynamical propagation rules to a phase space
point that is taken (and possibly modified) from an existing transition pathway. The
resulting paths have significant dynamical weights by construction. In addition, trial
paths generated by shooting and shifting have a good chance of exhibiting successful
transitions from A to B, since they are grown from phase space points on or near
reactive trajectories. In the following sections, we describe shooting and shifting
moves in detail, and indicate how they may be successfully implemented for various
classes of dynamics.

3.1 Shooting Moves

In a shooting move, a phase space point :cg,o ) is selected at random from the chain
of states comprising an old pathway, (%) (7). This state may be modified in some
way, for instance by displacing the atomic momenta by a small amount. Trajectory
segments are then “shot off” forward and backward in time from the modified state
:z;g,n), applying the appropriate dynamical rules until the new path extends from time
zero to time t. This procedure is schematically depicted in Fig. 5.

(0)

:L't,

A B

Figure 5: In a shooting move a new pathway (dashed line) is generated from an old one

(solid line) by first selecting a time slice ng)) of the old path and modifying it to obtain

xg,n). Then, a new pathway is constructed by generating forward (fw) and backward (bw)
trajectory segments initiated at the modified time slice ngl). If the new trajectory is reactive,
i.e., if it starts in A and ends in B, the path is accepted with a finite probability and rejected

otherwise.

Because trajectories obtained by shooting reflect the system’s underlying dynam-
ics, the corresponding generation and acceptance probabilities are relatively simple.
Specifically, the generation probability for the forward trajectory segment, beginning
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at time ¢’ and ending at time 7, is

T/At-1

ngen[o —nl= ][] » ( z(A)t - $§21)At) (22)
i=t' At

This generation probability is identical to the dynamical path weight for the for-
ward trajectory. Similarly, the generation probability for the backward trajectory
segment, beginning at time ¢’ and ending at time zero, is

t' /AL
Pealo 2 = 1 p (o8 = 2 )a) - (23)

Here, the appropriate small time step probability, p(z — z'), describes the evolution
of the system backward in time.

Combining the generation probability for the modified time slice :cg,n ) with the
generation probabilities of the forward and backward segments of the new trajectory
one obtains the generation probability for the complete new trajectory,

T/At-1
Pyen[aO/(T) = 2™(T)] = pgen[:cg,o) - 375?)] II » ( gA)t - xgzll)At)
i=t') At
# /At
X H p( mt—”%)nm) (24)

(n)

Here, pgen[mg, — Ty

] denotes the probability to obtain state xg,n )

call the shooting point, by modification of state azg,n ),

The generation probability from Equ. (24) can now be used to determined the
acceptance probability of a shooting move with the help of Equ. (21). For this
purpose the ratio appearing as the second argument of the min-function in Equ.
(21) must be determined. Using the dynamical path probability from Equ. (1) for

the old and the new path and the generation probability from Equ. (24) we obtain

, which we also

PLa™) (1)) Py o) () (1)) _ 2 (#8”) pyen (51 = 21”)

PO T Pyenlz®(T) = 2(T)] ~ (a7 pyen (s = )

) A,
i=0 ( Zivyae 'TiAt) p ( Tine = x(z—f—l)At)

where factors have cancelled because the trial trajectory z(™ (T) was generated using
the propagation rule of the underlying dynamics.
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This general result simplifies considerably if the dynamics conserve a stationary
distribution, pg(z). This condition is very general, applying to systems at equilib-
rium, nonequilibrium systems in a steady state, and nonequilibrium systems relaxing
to equilibrium with time-translationally invariant dynamics. In this case, p and p
are related in a simple way by microscopic reversibility,

plz=y) _ psi(y)
ﬁ(y — :E) pst(x) '

(26)

Substituting this relation into Equ. (25) and using Equ. (21) the acceptance prob-
ability for a shooting move is written

Pace[2©(T) = 2™(T)] = ha[z{V]hp[2)

(o) i (587) e () pn (a” — 7)
’ p (wgo)) Pst (wén)) Pst (x,g,o )) Pgen (x,ﬂ," ) — :Eg,n )) '

The above acceptance probability depends only on phase space points at two times,
at 0 and t'.

Often, the distribution of initial conditions is an equilibrium or steady state
distribution, and is therefore identical to the conserved distribution, p(z) = ps(z).
In this case the acceptance probability simplifies still further,

min

(27)

Pace[&©(T) = 2™(T)) = halz§V]hs[z)

play’) | Peenlzy xﬁf”)] .

p(w,g,o D pgen(mg,o ) acg,n ))

X min |1,

(28)

For symmetric generation probabilities of the shooting point this equation becomes

(n)
Pace[2*/(T) = 2 (T)] = halzg”|hp[2] min [1, ”(xi'@)] ' (29)

p(.’Et, )

In the following we will assume that generation probabilities for phase space modi-
fications are symmetric. If they are not, the asymmetry must be taken into account
as prescribed by Equ. (28). The simplicity of the acceptance probability in Equ.
(29) entails an algorithmic simplicity for shooting moves. In order to evaluate Py,
one need only compute the relative weights of old and new phase space points and
determine whether the new path begins in region A and ends in region B.
Equation (29) also suggests an efficient implementation of shooting moves. A
shooting move is initiated by selecting a time slice along the existing path. After gen-

( (0)

erating the shooting point ™) from the old time slice 2" a first acceptance/rejection
t t
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decision can be made. The shooting point is accepted if p(m%,n)) / p(a:?(t?)) >1lorifa
random number ¢ drawn from a uniform distribution in the interval [0, 1] is smaller

than p(xg,n )) / p(mg,o)) Otherwise the trial shooting move is aborted. If, on the other
hand, the shooting point is accepted, one proceeds with growing either one of the
forward or backward trajectory segments. If the appropriate boundary condition is
satisfied (e.g., if the forward trajectory segment ends in region B), the other seg-
ment is grown. The path is finally accepted if the boundary condition for this latter
trajectory segment is satisfied as well. A rejection at any stage of this procedure
allows subsequent steps to be skipped. In this case, the trial move is rejected and
the old path is retained. Using this sequential algorithm reduces the cost of rejected
moves, saving considerable computational effort (typically 10% to 30%).

Naively, one might expect that a gain in computational efficiency might be ob-
tained by growing the shorter of the two trajectory segments first. In case of rejection
the longer, and more expensive of the two segments, need not be grown. In most
cases, however, the shorter trajectory segment has a much higher probability to
reach the appropriate stable state than the longer one. This is due to the fact that
the shorter trajectory segment has less time to diverge from the old path than the
longer segment. Also, the short trajectory segment is less likely to have to pass the
dynamical bottleneck separating the stable states. As a consequence, early rejection
is not likely to occur when growing the short segment first and the long trajectory
segment must be determined in most cases. This effect can compensate the potential
advantage of occasional early rejections. Indeed, for some systems it might even be
advantageous to grow the longer trajectory segment first and proceed with growing
the shorter one only in case of acceptance. Since in general the associated efficiency
increase is only of the order of a few percent, it is good practice to carry out in-
tegration of, say, the backward segment first and after that the forward segment
regardless of which one of the two is shorter.

Shooting moves derive their efficiency from tendency of trajectories to diverge in
phase space, so that subsequent paths may be quite different. But it is important
that trial paths are not too different, so that they have reasonable chance of con-
necting A and B. In deterministic systems, the degree of divergence between old
and new trajectories in shooting moves depends on the magnitude of modification
of mgf)) Arbitrarily small modification gives new paths that are arbitrarily similar to
old paths. Large displacements give very different paths. It it thus possible to tune
the magnitude of modifications to give a desired acceptance probability on average,
as will be discussed in Sec. 3.1.4. For stochastic systems, small path displacements
may not be possible, since even an unmodified state can yield a different path.

3.1.1 Shooting Moves for Deterministic Dynamics

For deterministic dynamics, applying dynamical propagation rules to a phase space
point zy of an existing trajectory simply regenerates that trajectory. Shooting moves
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must therefore include modification of the shooting point, ofr example by adding a

(0)

random perturbation dz to z;’,
o =l + b, (30)

This can be done in a symmetric way by drawing dz is drawn from a distribution
w(dz) for which w(dz) = w(—dz). In this procedure, the generation probability of
(n) (0)

the new shooting point z;,’ from ;" is identical to that for the reverse move, i.e.,
pgen(azg,o ) wg,n )) = pgen(xg,n ) :Bg,o )). Selecting symmetric perturbations can be
complicated when allowed values of = are restricted by internal constraints of the
system. Methods for generating such displacements are discussed in Sec. 3.1.2.

It is usually sufficient to modify only the momentum part of the selected time

(0) (n) (0)

slice mtf) , leaving the configurational part unchanged. In this case, p;, " = py~ + dp

(m) _ ,.(0)

and r;’ =r,” (see Fig. 6). For some applications, however, it is advantageous to

change both the configuration and momentum parts of :cg,o) [13].

For deterministic dynamics, a trial trajectory is obtained by integrating the
equations of motion from the shooting point. The forward segment of the trajectory
is generated simply by integrating for the appropriate number of small time steps.
The backward segment, on the other hand, must be generated with the direction
of time inverted, i.e., with a negative time step. In the case of time-reversible
dynamics, this is accomplished by first inverting all momenta, and then integrating
forward in time. Formally, p(z — y) = p(z — y). Here, £ = {r, —p} is obtained
from = = {r, p} by inverting all momenta. In the resulting chain of states, momenta
are then inverted so that the backward trajectory segment evolves properly in time.
The complete protocol for performing shooting moves with deterministic dynamics
is summarized in Scheme 2.

We verify the soundness of this procedure by demonstrating that the reversibility
condition in Equ. (26) is satisfied. A small step in the backward trajectory segment
described above has probability

Py = z) = 0z — p-as(y)] = 8[z — ¢, (V). (31)

For the forward trajectory,
p@ = y) =6y — $ai(@)] = 3 [#al(v) — o] |9dar(x) /02| ", (32)

where |0¢as(x)/0x| is the Jacobian associated with time evolution of duration At.
This Jacobian describes the contraction or expansion of an infinitesimal comoving
volume element in phase space. Combining these small time step probabilities,

plz =y _ ‘&ﬁm(w)
Py — ) or

()
pst(cT) ’

(33)
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(b)

A

Figure 6: In a shooting move for deterministic trajectories a time slice wgf)) on the old path
(solid line) is selected at random and the corresponding momenta pgf’) are changed by a small
random amount ép. Integration of the equations of motion backward to time 0 and forward
to time ¢ starting from the modified state x,g,n) yields the new trajectory (™ (7") (dashed
line). If this trajectory is connecting A and B, it will be accepted with a non-vanishing

probability (panel a). Otherwise, it will be rejected (panel b).

B
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. Randomly select a time slice a:ff ) on a existing trajectory z(%)(7)

. Modify the selected time slice by adding a random displacement:
:cg,n) = :cg,o) + dz. The random displacement must be consistent
with the ensemble of initial conditions and should be symmetric

with respect to the reverse move.

. Accept the new  shooting point with  probability
min[l,p(a;g,n)) /p($§?))] Abort the trial move if the shooting
point is rejected.

. If the shooting point is accepted, integrate the equations of motion
forward to time 7 starting from :ci,n)

. Abort the trial move if the final point of the path segment, x(Tn),

is not in B and continue otherwise.

. Integrate the equations of motion backward to time 0 starting from

(n)

l‘t/ .
. Accept the new trajectory if its initial point .’,C(()n) is in A and reject
it otherwise.

. In case of a rejection the old trajectory is counted again in the
calculation of path averages. Otherwise the new trajectory is used
as the current one.

Scheme 2: Shooting algorithm for deterministic trajectories.
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The final equality results from the fact that the phase space flow generated by time
evolution conserves probability. Because the reversibility criterion is satisfied, the
simple acceptance probabilities from Equations (27) and (29) can be used, provided
a stationary distribution pg exists.

For some applications, the distribution of initial conditions is distinct from the
stationary distribution preserved by a system’s dynamics. For instance, one might be
interested in the relaxation of a system that has been driven away from equilibrium.
One might even be interested in an unstable dynamics that does not preserve a
stationary distribution. In both cases, it is possible to sample trajectories using
the same type shooting move described above, provided the distribution of initial
conditions p(z) is well-defined. To derive an appropriate acceptance probability for
this case, we return to Equ. (25). Using Equ. (32) and the chain rule for the
Jacobian, we obtain

p(:vgn)) |3$§,0) /Bacgo) |

Pace[#O(T) = 2(T)] = ha[z{" |hplel? min |1, 2702 220 L0
() |0z 0]

where we have again assumed a symmetric generation probability, i.e., pgen[ng) N
x,g,n)] = pgen[:vg,n) — xg,o)]
The Jacobian J(t') = |0zy/0x¢| appearing in Equ. (34) can in principle be
calculated by integrating
dJ(t)
Cdt
along the trajectory of interest with J(0) = 1. In the above equation, A(z) =
Tr(0%/0x) is the so called phase space compressibility of the dynamical system at z.
In general, A(z) is nonzero, and Jacobian consequently different from unity. But for
Newtonian dynamics, Liouville’s theorem guaranteed that the volume of comoving
phase space elements is conserved [46]. The Jacobian is thus unity, and P, has a
particularly simple form

= A(z)J(t) (35)

(x)
Pacc[®(T) = 2(T)] = ha[z"|hp [z min [1, ’p’i””(go);] : (36)
Zo

Remarkably, even when a stationary distribution does not exist, the acceptance
probability for Newtonian shooting moves depends only on the relative weights of
the initial conditions, and on the reactivity of the trial trajectory.

3.1.2 Selecting Phase Space Displacements

For the shooting algorithm we have described, acceptance probabilities are partic-
ularly simple if phase space modifications have a symmetric generation probability.

(0)

If an asymmetry is present, i.e., pgen[arg,o) — xg,n)] + pgen[:cg,n) — z,’], and is not
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accounted for in the acceptance probability, the trajectories harvested by path sam-
pling will not be correctly weighted. As indicated above, modifying states in a
symmetric way can be challenging when constraints are present. A general formal
procedure for taking into account linear constraints on momenta was presented in
the Appendix of Ref. [10]. Here we described straightforward procedures for displac-
ing momenta symmetrically, while satisfying common constraints such as fixed total
linear or angular momentum, or rigid intramolecular bonds. These simple proce-
dures are equivalent to the more general methods presented in Ref. [10]. For clarity,
we will discuss this issue using proton transfer in the protonated water trimer as
discussed in Sec. 1 as an illustrative example.

Proton transfer in the protonated water trimer has been studied extensively
with transition path sampling using empirical and ab initio models [10, 15]. In these
studies shooting moves where implemented by using momentum displacements dp
only. Since in the classical limit an isolated cluster evolves at constant energy F
according to Newton’s equation of motion, the simulations where carried out in
the microcanonical ensemble, i.e., p(z) «x §[E — H(z)]. Furthermore, the dynamics
conserves the total linear momentum P and the total angular momentum L. Thus
the complete distribution of initial conditions is

p(x) o< [E — H(z)] 0[P (z)][L(x)] (37)

where both the total linear momentum and the total angular momentum are assumed
to vanish. The delta functions in the above expression take into account the reduced
dimensionality of the accessible phase space caused by the conserved quantities.

To obtain a non-vanishing acceptance probability for shooting moves the per-
turbation Jp used to construct a new shooting point :vg,n) must be consistent with
the ensemble of initial conditions. For the cluster at constant energy, total linear
momentum and total angular momentum the displacement dx must be chosen to
conserve these quantities. Furthermore, as mentioned above, it must produce a
symmetric path generation probability. This can be accomplished as follows.

First, one selects a momentum displacement ép from a Gaussian distribution
which is added to the old momentum vector pg)). The total linear momentum of
the new momentum p’ is set to zero by subtracting Y, p;/N from all single particle
momenta. Next, the total angular momentum L' = " r; x p} is set to zero. This
can be accomplished with a procedure proposed by D. Laria and used in simulations
of water clusters [25]. For this purpose one first calculates the angular velocity
w = I7'L!, where I = ¥, m;(r? — r;r;) is the inertia tensor. Note that calculation
of the angular velocity w requires inversion of the tensor of inertia. Then, one
calculates new momenta

pl =p/;, —miw xr;. (38)

Finally, the new momenta are rescaled to obtain the appropriate total kinetic energy.
It can be shown that provided the center of mass of the system is located in the
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origin, the new momenta obey all constraints dictated by the conserved total energy,
linear and angular momentum of the system.

This procedure guarantees that the generation probability for new trajectories is
equal to the probability of the reverse move. It therefore explicitly satisfies detailed
balance. Similar procedures can be used to remove components of dp violating the
constraint of constant bond lengths. Molecules with fixed bond lengths are often
used in molecular simulations to eliminate the fast oscillatory motion induced by
stiff intramolecular bonds. If the distribution of initial conditions is microcanonical
and the dynamics is Newtonian, the acceptance probability for a shooting move
generated according to this procedure is

Pocc[(T) = 2(T)] = halz|hpla$)]. (39)

This acceptance probability implies that trajectories are always accepted if they
connect regions A and B.

Phase space displacements obeying the linear constraints of vanishing total linear
momentum and total angular momentum, and of fixed bond lengths can be also
generated using an iterative procedure such as RATTLE [47].

3.1.3 Momentum Rescaling

If the distribution of initial conditions p(xg), such as the canonical distribution, al-
lows for variations of the energy, shooting points with different energies must be
created. This can be done by adding a momentum displacement §p chosen from an
appropriate distribution to a given momentum pg,o) without rescaling the momenta
to a fixed total energy. Large momentum changes, however, most likely produce
large changes in the total energy of the system and therefore lead to a low ac-
ceptance probability. This problem can be solved by alternating constant energy
shooting moves with moves in which the energy is changed by rescaling the mo-
menta. This approach allows to control the change in momentum and the change in
energy independently.

Such an approach was necessary in recent work by Geissler and Chandler [16] in
which they studied the nonlinear response of a polar solvent to electronic transitions
of a solute with the transition path sampling method. In this study, non-equilibrium
trajectories relaxing from states obtained by dipole inversion were harvested with
a variant of the shooting algorithm. Since such solvation dynamics occurs rapidly,
the trajectories of interest are only tens of femtoseconds in duration. Accordingly,
large momentum displacements at the shooting point are required to generate new
pathways sufficiently different from the old ones.

The energy changing move alternated with constant energy shooting moves de-

scribed in 3.1 can be carried out as follows. First, a time slice mg,o ) along the old
(0)

path z(°)(7) is randomly chosen. At time slice x,’ the system has a kinetic energy
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of Kt(,o). Then, a new kinetic energy Kt(,n) at time ¢’ is selected from a distribution
¥(K). Although any form of 9(K) can be selected, a smart choice of 1(K) can
increase the efficiency of the simulation considerably. In general, the distribution
1(K) should be similar to the actual distribution of kinetic energies observed in the
system under study. In the study carried out by Geissler and Chandler, for instance,
1(K) was chosen to be the distribution of kinetic energies in an equilibrium system

in contact with a heat bath. Next, a new time slice xg,n) is generated by rescaling

the old momenta pg,o ) with a factor of v = (Kt(,n) / Kt(,o))l/ 2 to give the kinetic energy

Kt(,n). Note that rescaling of the momenta does not affect the total linear momentum
and the total angular momentum provided that they vanish.
In the above procedure, shooting points are generated with relative probability,

™ . () O gzl 0 lpﬁf’) - Kti'ozpﬁfn)]
pgen[act,n — CCt,O ] _ ¢(Kt/° )th,O . K '
T T e

(40)

¢ K@ Py

Due to the presence of the delta function the differential th(,o) of the old kinetic

energy can be expressed as function of the differential th(,n) of the new kinetic
energy,

(o] 1 0 0 K(IO) 1 n n K(’O) n
A = 3 e e = (ﬁ) > bl dny = (ﬁ aKy, (1)
o [e% # 67 @ t!

where p, p is component o of momentum py and m, is the mass associated with
degree of freedom «. Using this result and applying Equ. (32) to simplify the ratio
of delta functions in Equ. (40) we obtain

n 0 0 o)\ /721
pgen[l'g') - 371(5’)] _ "p(Kt(’ )) x (Kt(’ )> ]

Peenlel) = 2] (kM) \KD

(42)

where f is the number of independent degrees of freedom. In determining f the
number of constraints acting on the system must be properly taken into account.

Assuming the dynamics conserves phase space volume and correctly taking into
account the asymmetric generation probability from the above equation yields an
acceptance probability of

Pace[#(T) = &™(T)] = ha[z0"]hp[z]

(x(n)) ¢(K§’o)) y (Kt(’0)>f/2—1] |

0
X
pz) (e A&

)

X min |1,
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Thus, new pathways connecting A and B will be accepted depending on the change in
kinetic energy at time ¢’ and on the change of the probability of the initial conditions
at time 0.

3.1.4 Efficiency of Deterministic Shooting Moves

The efficiency of shooting moves can be controlled by tuning the magnitude of phase
space displacements dz. An optimal magnitude minimizes the correlations between
harvested paths. If the magnitude of dz is very small the new trajectory essentially
retraces the old one. Although the average acceptance probability is near unity in
this case, the random walk in trajectory space will progress slowly because of strong
correlations between subsequent trajectories. If, on the other hand, the magnitude
of dz is large, the new trajectory will drastically differ from the old one due to
the chaotic nature of the underlying dynamics. In this case, the new trajectory is
most likely not connecting A with B and the resulting acceptance probability is
near zero. Pathways are repeated many times before a new path is accepted. Again,
correlations between subsequent pathways decay slowly. The optimum magnitude of
the perturbation dz lies between these two extremes. This is completely analogous
to the situation in conventional Monte Carlo simulations. In that case the optimum
acceptance probability is often near 50% [44].

The effect of the magnitude of dx on the efficiency of transition path sampling
can be systematically analyzed by calculating correlation functions of various quan-
tities as a function of the number of simulations cycles. Ideally, such correlation
functions decays quickly, indicating that path space is sampled with high efficiency.
In Ref. [11] we have carried out such an efficiency analysis for transition path sam-
pling of isomerizations of a model dimer immersed in a soft sphere liquid. In that
study we calculated correlation functions

(0G(0)0G(n)) B

c(n) = 0.y (44)

where n is the number of simulation cycles. The fluctuation G is defined as 6G(n) =
G(n) — (G)ap and G[z(T)] is a quantity depending on the path coordinates z(T).
The notation (G) 4p indicates weighted average of the path functional G[z(7)] over
all pathways in the transition path ensemble,

(G)ap = / Da(T) Paglz(T)Gla(T)]. (45)

Since the sequence of pathways {z;(7)} generated in a transition path sampling
procedure visits pathways according to their weight in the transition path ensemble,
path averages (G)ap can be calculated as averages over the sequence of pathways

{w:(T)), i
(@)an = Jim > Glai(T)], (46)
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Figure 7: (a) Typical correlation functions for the three quantities hg(27/2) (solid line), V;,
(dotted line), and 7 (dashed line) as a function of the number of simulation cycles calculated
for isomerizations in a model dimer [11]. (b) Number of correlated cycles as a function of the
acceptance probability P,c.. The different line types refer to results obtained from analyzing

correlation functions of hp(z7/2) (solid line), Vi, (dotted line), and 7 (dashed line).
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where N is the total number of simulations cycles. Accordingly, the correlation
function c¢(n) can be expressed as

_ limyoo(1U/N) S 660 (T16G (e (T))

¢(n) iy 00(1/N) ¥ 6G2[ai(T))]

(47)

Correlation functions c¢(n) are shown in Fig. 7a for three different quantities G:
the final region characteristic function hp(z7/2) at the path midpoint z7 /5, the
potential energy Vi, of the system when the dimer surpasses the potential energy
barrier separating the stable states, and the transition time 7. The transition time
7 is the time required to reach final region B after the system has left the initial
region A. These correlation functions where obtained in a simulation for which the
average acceptance probability for shooting moves was about 40%.

iFrom the correlation functions ¢(n) one can computer the number of correlated
cycles, n. by determining at which cycle n the correlation function falls below a
certain threshold, say, 0.5. The number n. of correlated cycles is a measure of the
efficiency of the simulation. For the isomerization of the model dimer, we have
studied how n. depends on the magnitude of the momentum displacement. To
obtain a more generally usable criterion for the choice of §p, we have plotted n.
as a function of the average acceptance probability P, of shooting moves. This
acceptance probability is monotonically related to the magnitude of the momentum
displacement dp. A small §p yields a high acceptance probability and a large dp
leads to a small one.

The results of this analysis are depicted in Fig. 7b which shows the number of
correlated cycles n. as a function of the average acceptance probability P,... The
three different curves represent results obtained by analyzing the correlation func-
tions of hp(77/2), Vir, and 7. In all three cases the number of correlated cycles is
high for low and high acceptance probabilities and has a minimum for intermediate
acceptance probabilities. These results suggest that, as a rule of thumb, the mag-
nitude of the random displacement dx should be chosen to obtain an acceptance
probability of about 40%. Since rejected moves are computationally less expensive
on the average than accepted moves, acceptance probabilities even lower than 40%
might be optimal in some cases.

The curves depicted in Fig. 7 indicate that in transition path sampling a statis-
tically independent trajectory is obtained after a small number (say three to five)
of accepted trial moves. Thus, the computational cost of harvesting N independent
trajectory of length 7 is comparable to the effort required to compute a single long
trajectory of length N7. This linear scaling in trajectory length 7 and number of
trajectories N allows application of the transition path sampling method to the sim-
ulation of complex, high-dimensional systems, such as chemical reactions in solution
or isomerizations of biomolecules.

In some cases the applicability of current shooting algorithms can be limited
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by the Lyapunov instability of the underlying dynamics. This mechanical insta-
bility leading to chaotic behavior, is best quantified with the so called Lyapunov
exponents A describing the divergence in phase space of neighboring trajectories.
On the average, the separation § between two initially close points in phase space
grows in time like § o« exp(At). Due to this fast exponential divergence, trajecto-
ries generated by “shooting” from only slightly different phase space points become
completely different after a relatively short time. In typical simple liquids Lyapunov
exponents are of the order of A ~ 1ps~! [48]. Accordingly, a perturbation of the
order of the computer precision, ~ 107! for double precision arithmetic (i.e., the
smallest possible perturbation on a digital computer), needs of the order of 10ps to
grow to the scale of the liquid structure. Doubling the number of bits in the repre-
sentation of numbers would increase this time only by a factor of two. The average
shooting acceptance probability of trajectories longer than this characteristic time
is therefore low. Accordingly, processes in which the crucial fluctuations take much
longer to occur than this critical time are difficult to study with current shooting
algorithms [17].

3.1.5 Shooting Moves for Stochastic Dynamics

Shooting moves are efficient for stochastic dynamics as well. In most aspects, these
moves are identical to the shooting moves employed for deterministic dynamics.
Some important details, however, are different. These differences will be discussed
in this section. The shooting procedure is schematically illustrated in Fig. 8 and
summarized in Scheme 3.

() (n)

:Et, = :Bt,

A B
Figure 8: In a shooting move for stochastic dynamics forward and backward trajectory
segments can be initiated from an unchanged shooting point ."cgfl) = ."c,gf)).

Imagine a stochastic path z(®)(T) of length 7 starting in region A and ending in
region B. One can randomly select a point :vg,o) along this path, initiate a stochastic

trajectory starting from a:,E,O ) and integrate it forward to time 7" using the propagation
rule corresponding to the underlying dynamics, for instance Equ. (11) or Equ. (14).

Then the backward segment of the trajectory is generated using the time inverted
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(0)

. Select a time slice z;,” at random from the time slices of an existing

path z(©)(T) .

. Compute a new stochastic trajectory segment from t' to 7 starting

(0)

from z,,” using the progation rule of the underlying dynamics.

. The new trajectory segment is rejected if its last state does not lie

in region B, i.e., if hB[acg;l)] = 0. Otherwise one proceeds with the
next step.

(n)

. If necessary, invert momenta at the selected time slice z;, .

. Compute a stochastic trajectory back to time 0 starting from the

configuration with inverted momenta using the propagation rule
of the underlying dynamics.

. Invert the momenta along the newly generated trajectory segment

so that the whole path evolves in forward direction.

. Thew new trajectory is accepted if its initial state lies in region A,

ie., if hA[x(()n)] =1

Scheme 3: Shooting algorithm for stochastic trajectories.
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dynamics satisfying Equ. (26). Alternatively, the backward segment can be grown
before the forward segment. In contrast to the case of deterministic dynamics, it
is not necessary to modify a:,g,o ) before shooting, because the random nature of the
dynamical propagation will alone cause the II(G(B)\)N patl(ln)to diverge from the old one.

In this case the generation probability pgen(z,” — ;) is trivially symmetric and
the acceptance probability of Equ. (28) simplifies to:

Pacc[®(T) = 2™(T)] = halz|hpla$]. (48)

Thus, any new pathway connecting regions A and B can be accepted.

For Brownian dynamics described in Sec. 2.4, the backward trajectory segment
can be generated by integration of the equations of motion with an appropriate small
time step algorithm [6]. Before initiating a trajectory, the momenta belonging to the
shooting point are inverted. Then, a new trajectory segment of length #' is initiated
at the shooting point with inverted momenta and is integrated back to time 0. After
that, the momenta in this newly generated path segment are reversed such that the
whole path evolves in forward direction. Accordingly, the small time step generation
probability associated with this type of backward shot is

plz —y) =plz = y), (49)

where, again, Z = {r, —p} is obtained from z = {r,p} by inverting all momenta.
It can be easily shown that this generation probability satisfies condition (26) with
the canonical distribution as the stationary distribution [6]. Hence, the acceptance
probability from Equ. (48) is valid for stochastic trajectories generated by numerical
solution of Langevin’s equation of motion.

In the high friction limit the inertial term appearing in the Langevin equation
can be neglected leading to simplified equations of motion in which the state of the
system if completely described by the particle positions alone. In this case the above
procedure can be carried out using the unmodified forward integration algorithm to
generate the backward trajectory segment.

Like for Langevin dynamics in the high friction limit time does not appear in
the Metropolis Monte Carlo transition probability from Equ. (14) . Forward and
backward propagation are therefore indistinguishable and the backward trajectory is
generated with the forward propagation rule. Accordingly, the backward generation
probability is identical to the forward generation probability, i.e. p(x — y) = p(z —
y). Condition (26) therefore becomes identical to the detailed balance condition
which the Monte-Carlo algorithm satisfies by construction,

PO — oxp (=) — Ha)]) (50)

Hence, Equ. (48) is valid also for Monte Carlo dynamics and a new trajectory can
be accepted if it connects region A with region B.
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Another important characteristic of shooting moves for stochastic trajectories is
that it is not necessary to shoot forward and backward simultaneously, i.e., replac-
ing only the forward of backward segment of an old path gives a trial path with
significant dynamical weight. In contrast, growing only one of the two segments for
deterministic dynamics yields trajectories with zero dynamical weight.

3.2 Shifting Moves

A shifting move translates an existing pathway forward or backward in time. As
depicted in Fig. 9, this move is graphically similar to the “reptation” motion of a
polymer confined to a microscopic tube [49]. In a shifting move, a trial trajectory is
obtained by first deleting a segment of length §t from the beginning (or end) of an
existing trajectory. A new trajectory segment of length §% is then grown from the
opposite end of the old path, by applying the dynamical propagation rules. These
operations effectively shift the pathway forward (or backward) in time.

As in the case of shooting moves, the generation and acceptance rules for shifting
moves are quite simple. The generation probability for a forward shifting move is
just the dynamical weight of the newly generated trajectory segment appended to
the end of the path:

T/At—1
Bl zO(T) =@M = [ pa®, =2l 5 (51)
i=(T—dt)/ At

Here, it is understood that for times ¢’ = 0 through ' = ¢ — §t, the new path is
identical to a portion of the old path,

xz(-z)t = wz('OA)tMt for i=0,...,(T - dt)/At. (52)
In a backward shifting move, a new trajectory segment affixed to the beginning of
the path is obtained by time-reversed propagation. Correspondingly, the dynamical

weight of this segment is composed of time-reversed transition probabilities p(x —
y). The generation probability for backward shifting is thus

5t/ At
Ph[O(T) = 2T = ] #a, = 2 50). (53)
i=1
where it is understood that
BN = 2R, for  i=0,...,(T - 6t)/At. (54)

An appropriate acceptance probability for shifting moves is most easily obtained
by requiring that forward and backward moves are performed with equal frequency.
We also require that the shifting length, §, which is required to be a multiple of At,
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A B

Figure 9: In a forward shifting move as shown in panel (a) a new trajectory is generated
by removing 6t/ At time slices (dotted line) from the beginning of the old path 2(®)(7) and
regrowing the same number of time slices (dashed line) at the end of the old path. If the
time interval §t is small, most part of the new trajectory coincides with the old one and
only a small segment of the new trajectory must be integrated. Panel (b) shows a backward
shifting move in which 6¢/At time slices (dotted line) are removed from the end of the old
path (grey line) and a new path segments if grown backward starting from the beginning of
the old pathway (dashed line).
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is drawn from the same distribution for forward and backward moves. With these
restrictions, it is sufficient that detailed balance is satisfied for each pair of forward
and backward moves:

Papla’® (T)]Pree [#')(T) = 2)(T)] Pyep [#(T) = 2(T)] =
Pap[z™) (T)|Pae[a™(T) = 2(T)| Py [2™)(T) — 2O(T)]. (55)
Substituting Equations (51) and (53) into Equ. (55) we obtain

Proe[#(T) — 2™(T))]

PR [a)(T) = 20)(T)]

)y ot/At-1 5 20 G,
n n Z i+1)At 1AL
hale sl A% ( e )
p(zy ) i=0 P ('Tz'At - x(z’—f—l)At)

where many terms have cancelled since (7 — dt)/At time slices of the new and
the old path are identical (but have different indices). Further cancellation is due
to the identity of path probability of the new path and the generation probability
associated with the newly grown part of the new path.

As is the case of shooting moves, this ratio simplifies considerably if p(z — y)
and p(y — z) are related by the microscopic reversibility criterion from Equ. (26).
In this case, satisfactory acceptance probabilities for forward and backward shifting
moves are

[ (n) (0)y
PL[e(T) = 20(T)] = halef sl min [1, 200 5] Pl )| (q7)
L plzg’)  pst(zgy )]
and
i (0) (n)y7
PR[at™(T) = 2)(T)] = halel sl min |1, ”(x?ro; L R

palag”)
where we have used the fact that :v((;z) = :c(()n) If, further, the distribution of initial

conditions p(x) is identical to the stationary distribution pg (z), Equations (57) and
(58) become

Pl [2(T) = 2®)(T)] = halei)hple$), (59)
and
P2 [™(T) = 2©(T)] = ha[z{]hp[z]. (60)

From this results, it follows that shifting should be accepted provided that the
trial path ac(n)(T) connects states A and B. The average acceptance probability
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of a shifting move can be easily controlled by changing the magnitude of the time
interval dt.

Short shifting moves are computationally inexpensive and facilitate convergence
of quantities averaged over the transition path ensemble. However, shifting moves
are essentially orthogonal to shooting moves; alone, small shifting moves are not
ergodic and do not change the portions of trajectories near the transition state
region. Therefore shifting moves do not sample trajectory space ergodically and
must be used in conjunction with other trial moves, such as shooting moves.

Shifting moves are slightly different for stochastic and deterministic dynamics.
We first discuss the application of the shifting algorithm to systems evolving deter-
ministically and then discuss shifting moves for stochastic dynamics.

3.2.1 Shifting Moves for Deterministic Dynamics

In a forward shifting move of length ¢t for deterministic dynamics the new trajectory
segment is generated by integrating the equations of motion of the system for §t/At

time steps starting from the endpoint :cg,(-)) of the old path. Similarly, the backward
shifting move is carried out by integrating the equations of motion for §t/At time
(0)

steps backward in time starting from ;. Accordingly, the single step generation
probabilities for the forward and the backward move are

p( — y) = [y — dar(z)], (61)

and
Py — ) = 0[z — d—ne(y)], (62)

respectively. As shown in Sec. 3.1.1, the generation probabilities p(z — y) and
p(y — z) associated with this type of procedure satisfy the reversibility condition
expressed in Equ. (26). In equilibrium, the acceptance probability for a shifting
move for deterministic trajectories is therefore simply given by Equations (59) and
(60), i.e., the new pathway obtained by shifting the old one in time can be accepted
whenever it connects A with B. The shifting algorithm is summarized in Scheme 4.

Shifting moves for deterministic trajectories are particularly inexpensive when
carried out in long uninterrupted sequences. In this case, the pathway is constrained
to a 1-dimensional manifold defined by the equations of motion. By storing states
along this manifold as they are obtained, shifting moves can eventually be performed
with no cost, since the time evolution of new trajectory segments is already known.

If no stationary distribution ps(z) exists or if it is unknown, a different approach
must be taken. For this purpose we return to Equ. (56) and insert the forward and
backward generation probabilities from Equations (61) and (62). Using Equ. (32)
and applying the chain rule for products of Jacobians we finally obtain the following
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Forward Shifting:

1. Randomly select a positive time interval §t from a distribution
w(dt).

2. Copy the (T — 6t)/At last time slices of the old path to the first
(T — 6t)/At time slices of the new path, i.e., xz(.Z)HJt = xz(-oA)t for
i=0,...,(T —dt)/At.

3. Integrate the equations of motion forward for d¢/At time steps

starting from x%{l)_ st

4. Accept the new path (™ (T if it is reactive and reject it otherwise.

Backward Shifting:

1. Randomly select a positive time interval 6t from a distribution
w(dt).
2. Copy the (T — d6t)/At first time slices of the old path to the last

(T — 6t)/At time slices of the new path, i.e., xl(-z)t = J;EOA)H& for
i=0,...,(T = dt)/At.

3. Integrate the equations of motion backward for §t/At time steps
(n)

starting from zy,’.

4. Accept the new path z(™ (T) if it is reactive and reject it otherwise.

Scheme 4: Shifting algorithm for deterministic trajectories.
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expression for the acceptance probability of a forward shifting move,

(n) (o)
PL[s)(T) = 2)(T)] = halaf” Jhplaf min [1, A 2 ] . (63)
plzg”) |0z

For a new trajectory z(™(7) generated with a backward shifting move from
the old trajectory z(%)(T) the acceptance probability is slightly different. Using
analogous manipulations one obtains:

(n) ()7t
P2 [O(T) = 2(T)] = halzhpa'™) min ), P ) |01 . (64)
ace p(x(o)) 9z

0 0

If the dynamics is phase space volume conserving, i.e., |0z¢/0z¢| = 1, such as for
Newtonian dynamics, the acceptance probability for both forward and backward
shifting moves reduces to

(n)
Pace[2®/(T) = 2 (T)] = halzg”|hp[2] min ll’ pix?aﬂ ' (65)
PZy

In this case, a new trajectory obtained with a shifting move is accepted with a

probability of min|[1, p(x(()n)) / p(:c(()n))] provided the new trajectory connects A with
B.

3.2.2 Shifting Moves for Stochastic Dynamics

Analogous shifting moves can be carried out also for stochastic trajectories. In a
forward reptation move for stochastic trajectories time slices removed from one end
of the path are regrown on the other using the integration rules of the underlying
dynamics. In a backward reptation move, on the other hand, a new path segment is
grown backward using the same procedures used to generate the backward trajectory
of a shooting move. As was shown in Sec. 3.1, generation probabilities associated
with these procedures satisfy the reversibility condition from Equ. (26). Therefore,
the acceptance probability from Equations (59) and (60) can be used for stochastic
reptation moves based on Langevin and Monte Carlo dynamics. According to this
acceptance probability a shifting move for stochastic trajectories is always accepted
if both the starting point and the end point of the new path lie in their respective
stable states. The reptation algorithm for stochastic trajectories is summarized in
Scheme 5.

3.3 Memory Requirements

Molecular dynamics simulations proceed in discrete time steps that are comparable
to the shortest characteristic time of atomic motions, often ~ 1 fs. A 1 ps pathway
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Forward Shifting:

1.

4.

Randomly select a positive time interval 6t from a distribution

w(dt).

. Copy the (T — dt)/At last time slices of the old path to the first

(T - 5t)/?7t' tirgle)/sgces of the new path, i.e., xgz)ﬂ-ét = xz(-oA)t for
i=0,...,(T - 6t)/At.

(n)

. Generate 6t/ At new time steps starting from z--’ 5, using the prop-

agation rule of the underlying stochastic dynamics.

Accept the new path z(™) (7") if it is reactive and reject it otherwise.

Backward Shifting:

1.

Randomly select a positive time interval 6t from a distribution

w(dt).

. Copy the (T — dt)/At first time slices of the old path to the last

(T — 6t)/ At time slices of the new path, i.e., wgz)t = wz(oA)tMt for
i=0,...,(T —§t)/At.

(n)

. Invert the momenta belonging to z;,”.

(n

. Generate 0t/ At time steps backward starting from z 5t) by applying

the propagation rule corresponding to the underlying stochastic
dynamics.

. Invert the momenta in the newly generated path segment.

. Accept the new path z(™ (T") if it is reactive and reject it otherwise.

Scheme 5: Shifting algorithm for stochastic trajectories.
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is thus represented by about 10® microstates. Storing such pathways in computer
memory quickly becomes costly for large systems. Fortunately, it is not necessary
for the purposes of transition path sampling to store every microstate belonging to
a given pathway. The algorithms we have described are exact even when a path
is represented by just a few states. Clearly, though, a shooting move can only be
initiated from a microstate that has been stored. For efficient sampling, it is thus
advantageous to store states with a time resolution that captures typical fluctuations
of the reaction coordinate. In our experience with molecular liquids storage of states
is necessary only about every 10fs leading to considerable memory savings. Note
that such a reduction of memory requirements is not possible for other algorithms
such as the local algorithm or the dynamical algorithm discussed in Sec. 3.5. In
these cases it is necessary to maintain full trajectories in memory at all times.

For some systems, storing even just tens of microstates can be burdensome.
For instance, in the Density Functional Theory based method of Car and Par-
rinello [36] the occupied single-particle Kohn-Sham orbitals {1;} are propagated
in time together with the nuclear positions using a set of fictitious equations of mo-
tion. Shooting moves to harvest Car-Parrinello trajectories can be carried out by
selecting a time slice along an existing path and changing only the nuclear momenta
before computing a new trajectory. Then, the new path is accepted according to the
criteria described in the preceding paragraphs. Due to the large amount of memory
necessary to store the Kohn-Sham orbitals and their time derivatives, it is, however,
not possible to keep a complete pathway consisting of typically 100 copies of the sys-
tem in memory with current computational resources. Therefore, a few time slices
for shooting are selected randomly before calculating the trajectory and a complete
set of data including the Kohn-Sham orbitals is stored only at these specific time
slices [15]. Shooting moves can then be initiated from the preselected states. Such
a technique has been used to harvest Car-Parrinello trajectories for proton transfer
in the protonated water trimer [15] and for autoionization in liquid water [24].

3.4 Stochastic Trajectories as Sequences of Random Numbers

As discussed in previous sections, application of the shooting and shifting algorithms
is simple if the backward generation probability is related to the forward generation
probability by the reversibility condition from Equ. (26). To prove this relation
for a specific dynamics knowledge of the stationary distribution is required. While
statistical mechanics can provide simple expressions for the stationary distribution
in equilibrium systems, in general no such expressions are known for the station-
ary distribution of non-equilibrium steady states. Imagine, for instance, a system
evolving according to Langevin dynamics driven away from equilibrium by a time
dependent perturbation or a non-gradient force field. Such a system can converge to
a stationary state, but the associated phase space distribution is usually unknown.
Many interesting dynamical phenomena can be described by this class of dynamics,
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including chemical reactions [50] and thermal ratchets [51]. Especially at low noise
intensities, such phenomena often involve large, rare fluctuations [52, 53]. In this
case straightforward simulation is impractical due to the separation of time scales
discussed in the Sec. 1. Transition path sampling, on the other hand, is capable of
solving the time scale problem, but is complicated by the unknown distribution of
initial conditions. Recently, Crooks and Chandler have solved this problem adapting
the transition path sampling methodology for the simulation of large fluctuations in
non-equilibrium systems [26]. With this algorithm, studies of large and rare fluctu-
ations in non-equilibrium model systems have been successfully carried out for noise
intensities 10 times smaller than previously possible.

The basic idea of the Crooks-Chandler algorithm described in [26] is to represent
a pathway by the sequence of random numbers, the noise history, used to generate
it. In this representation, local changes of the noise history can be employed to
generate non-local changes of trajectories. To see how this can be achieved consider
a system evolving according to Langevin’s equation of motion in the high-friction
limit:

i = F(r,t) + R(t), (66)

where 7 represents the configuration of the system and R is a stochastic force with
correlations (R(0)R(t)) = ed(t). The system is driven out of equilibrium by a
systematic force F(r,t) that is either explicitly time-dependent or nonconservative.
The above equations of motion can be integrated over short times by representing R
with a set of random numbers ¢ [38]. The appropriate distribution for ¢ is Gaussian,
with zero mean and a variance e. Because a random number must be drawn for
each degree of freedom, ¢ is a vector with the dimensionality of configuration space,
f- The sequence of random numbers along a trajectory specifies the noise history
R(t). Accordingly, the probability to observe a certain stochastic trajectory z(7T)
is proportional to the probabilities p(¢) of all vectors of random numbers ¢ used to
generate that trajectory,

T/At-1 T/A-1
Plzo;€(T)] = p(zo) [[ pléiar) =p(zo) ][ WGX}){—@N\Q/?G}- (67)
=0 =0

Here, || is the magnitude of the vector ¢ drawn for time ¢.

This representation of the dynamical path probability emphasizes specific re-
alizations of the random force R. It enables an interesting class of trial moves in
trajectory space: A new path z(™ (7) is obtained from an old path z(°) (T by replac-
ing the noise fg,o ) at one randomly chosen time #' by a new set of random numbers

fg,n ) drawn from the distribution p(€). The noise histories of the new and the old
path are identical except at time ¢/, and the new path coincides with the old one
from time 0 to time #'. From time #' + At to time 7, the new path is obtained by
integrating the equation of motion with the modified noise history. All new time
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slices after time ¢’ will differ from those of the old path. A local modification in
noise space thus generates a small but global move in trajectory space.

Due to the dissipative nature of these dynamics, trajectories initiated from two
nearby points converge rapidly if they possess the same noise history. As a conse-
quence, a new trajectory generated from a reactive old trajectory has a high prob-
ability to be reactive as well. Such moves in noise space therefore have a high
acceptance probability. This algorithm is summarized in Scheme 6.

1. Randomly select a time slice :cg,o ) on the existing trajectory z(©) (7).

2. Replace the set of random numbers {g,o ) belonging to time slice
azg)) by a new set of random numbers {g,n ) drawn from a Gaussian

distribution with the appropriate mean and variance.

3. Determine the new path z(")(7) from #' + At to 7 using the mod-
ified set of random numbers to integrate the equations of motion.

4. Accept the new path if the final point a:%r-l) is in region B.

Scheme 6: Crooks-Chandler noise history algorithm for stochastic trajectories.
The generation probability for trial paths obtained from this type of move is
Pyen[a®(T) = 2™(T)] = p(¢f"), (68)

where §§,n ) is the new random number at time ¢'. Inserting this generation probability
and the path probability from Equ. (67) into Equ. (21) we obtain a corresponding
acceptance probability

Pacel#o(T) = 2a(T)] = halz§"hp[{]

min

X p(w{’) M~ pEn) | p&”) (69)
Z

X .
(e T T peR)  pE™)
Most factors in the second argument of the min-function cancel because the noise
histories of the new and the old trajectories differ only at time #'. Because such
a move does not modify the initial time slice of the path (x(()n) = :1:(()0)), Equ. 69
simplifies to
Pace[2o(T) = #u(T)] = hp[z'P]. (70)
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Thus, a new path obtained by applying local changes in noise space accepted, if it
ends in region B.

This algorithm harvests trajectories with identical initial time slices z¢. In order
to obtain pathways differing at all time slices, one can propagate the initial points
zo by carrying out a few dynamics steps without changing the noise history. Since
trajectories with the same noise history converge quickly even if started from differ-
ent initial conditions, the new path will likely exhibit the rare transition of interest.
Since furthermore the dynamics generates the stationary distribution, a new path
created by propagation of the initial condition without modification of the noise
history can always be accepted if it is connecting regions A and B.

3.5 Other Algorithms

Preceding sections have described the most efficient algorithms we have devised
to sample transition paths in complex systems. Other algorithms, while sound in
principle, are far less efficient than shooting and shifting. For completeness, we
discuss these less efficient algorithms briefly.

3.5.1 Local Algorithm for Stochastic Pathways

Perhaps the simplest algorithm applicable to the sampling of stochastic transition
pathways is the local algorithm. In this algorithm a time slice wg,o ) of an existing
stochastic pathway is selected at random and modified, for instance by adding a
small displacement dx to positions and momenta, mg,n) = mgf)) + dx. All other time
slices remain unchanged. This modification, which is local in time, affects the path
probability P4p[z(T)] and hence the acceptance probability for the new path. If
the displacement

0z is chosen from a symmetric distribution w(dz) = w(—dx), the probability to
generate the new path from the old one equals the generation probability for the
reverse move and, according to Equ. (21), the new path is accepted with probability
P} o — oy

p(:z:g,ozm — :1:,(:,0)

() = 2 5,)

() =2l a) |

Pyec[2o(T) = zn(T)] = min |1, (71)

where we have assumed that we have modified an intermediate time slice, i.e., 0 <
t' < T. Correct acceptance probabilities for local moves of the first and last time
slices are slightly different and can be easily worked out [5].

Although correct in principle, the local algorithm suffers from several shortcom-
ings. The most serious one is the inefliciency of the local algorithm originating in the
local character of the moves. In contrast to the shooting and shifting algorithms, the
rate at which path space is sampled scales with L3, where L is the number of time
slices [54]. This unfavorable scaling makes the local algorithm impractical for all but
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the simplest problems. Furthermore, all time steps of the path need to be stored
in memory, while shooting and shifting algorithms require only storage of states in
regular intervals along a trajectory. Another disadvantage of the local algorithm is
that it cannot applied to deterministic trajectories. To date, the only way to sample
deterministic trajectories is by shooting and shifting.

Special care must be applied when constructing a local algorithm for Metropolis
Monte Carlo trajectories. Due to possible rejections, the appropriate transition
probability contains a singular part (see Equ. (14)). The generation algorithm
for local path moves must take this singularity properly into account. Appropriate
acceptance probabilities have been worked out in Ref. [5].!

3.5.2 Dynamical Algorithm

For stochastic pathways, such as those generated according to Langevin’s equation
of motion, the path probability functional P4g[z(T)] can be written as

Pap[(T)] = exp(=Sap[z(T)]), (72)

where the functional S4p[z(7)] depending on all path coordinates z(7) is called the
path “action”. The form of the above equation, similar to the canonical distribution
function exp[—pV (r)], suggests to sample the path distribution Pag[z(7)] with
dynamical methods based on generalizations of Newton’s equation of motion. For
this purpose path space is extended to include also “momenta” y(7) = Mz(T) of
the path coordinates z(7). Here, M is an artificial mass associated with the path
coordinates and the dot indicates a derivative with respect to an artificial time 6.
This new space {z(7),y(7)} has twice the dimensionality of the original path space.
One then defines a path Hamiltonian functional Hp[z(T),y(7)] by adding a “kinetic
energy” to the path action,

2
Hplw(T),y(T)] = 3 5% + Sla(T)) (73)

From this Hamiltonian functional one can derive a set of equations of motion capable
of moving the path z(7") through path space in an artificial time 6,

dey _ OHp _yt

do N 8yt N M’

% _ _8HP _ _85,43[33(7)] (74)
do Bazt 6.’Et ’

'H. C. Andersen has drawn our attention to an omission in Ref. [5]. In Metropolis Monte Carlo
trajectories sequences of multiple rejections can occur. Attempts to modify time slices in the interior
of such a sequence always lead to rejections. More specifically, Equations (17) and (18) of Ref. [5]
must be modified to include sequences of the form 71 = r, = -1 (in the notation of Ref. [5]). In
that case the acceptance probability for a local move from r; to r, vanishes, i.e., Pacc[rr — 7] = 0.
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If these equations are equipped with an appropriate thermostat, for instance a
stochastic Andersen thermostat [55] or a deterministic Nosé-Hoover thermostat [37],

the resulting distribution in path space is consistent with exp(—Sag[z(T)]) = Pas[z(T)]-
Alternatively, a stochastic Langevin equation may be employed to drive the path
through path space.

The forces necessary to integrate the artificial equations of motion are obtained
by differentiating Sap[z(7)] = — InP4p[z(T)] with respect to the path coordinates
x. Since Papl[z(T)] is a product of transition probabilities, the distribution of
initial conditions and the boundary conditions constraining the path to start in A
and end in B, the path action Sap[z(7)] is a sum of terms originating from the
different contributions to the path probability. The boundary conditions h4(zg)
and hp(z7) act as hard walls confining the endpoints of the path to regions A and
B, respectively. These hard walls require special attention when integrating the
equations of motion (74).

Although correct in principle, dynamical path sampling algorithms are far infe-
rior to shifting and shooting algorithms in terms of efficiency. One reason for this
deficiency is that due to the strong coupling between subsequent time slices espe-
cially for low friction very small time steps must be used in order to reproduce the
associated high frequency oscillations in the path dynamics correctly. Thus, path
motion in trajectory space proceeds slowly. The sampling rate is further decreased
by the necessity of computing second derivatives of the potential in order to deter-
mine forces acting on the path variables. Such calculations can be onerous especially
in the case of first principles molecular dynamics simulations. For these reasons dy-
namical algorithms have not been applied to processes occurring in complex systems
so far.

3.5.3 Configurational Bias Monte Carlo

In its original form the configurational bias Monte Carlo algorithm is a method to
sample polymers in the melt in an efficient way [56]. The basic idea of the algo-
rithm is to regrow entire polymers in a biased fashion in order to avoid unfavorable
overlaps. Due to the formal similarity between polymers and stochastic pathways a
Configurational Bias Monte Carlo scheme can be constructed to sample transition
pathways [5]. To date this algorithms has been only used to study the kinetics of
hydrogen bonds in liquid water [8].

Also, algorithms familiar from path integral simulations [54], such as the staging
algorithm [57], can be used to sample the transition path ensemble for stochastic
trajectories. These algorithms are, however, less efficient than the shooting and
shifting algorithms, which are the most efficient transition path sampling algorithms
found so far.
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3.6 Parallel Tempering

The transition path ensemble includes all pathways that make successful transitions
on the timescale of the path length L. For complicated energy surfaces, however, it
may be difficult to sample all statistically relevant pathways. For example, proton
transfer occurs in the protonated water trimer via two different classes of path-
ways [15]. Switching from one class of transition pathways to the other is hindered
by a high energetic barrier. One might expect similar problems in sampling pro-
tein folding pathways for physiologically relevant temperatures. Such ergodicity
problems are akin to those encountered in Monte Carlo simulations of supercooled
liquids and glasses, where locally stable states are separated by high energy barriers.
Various techniques have been developed to overcome these problems in the context
of conventional Monte Carlo simulations, including J-walking [58], multicanonical
sampling [59] and parallel tempering [60, 61, 62]. In principle, all these methods
can be generalized to improve sampling of the transition path ensemble. Vlugt
and Smit [23] have recently shown that parallel tempering is especially suitable for
transition path sampling.

In a conventional parallel tempering calculation, several simulations are per-
formed in parallel at different temperatures. One allows exchange of configurations
between different temperature levels with a probability satisfying detailed balance.
At low temperatures, the system is confined to the vicinity of a local energy mini-
mum, but at high temperatures the system can surmount energetic barriers readily.
With parallel tempering, the system is able to move efficiently through configura-
tion space, while sampling the statistically most important, low energy regions with
correct probability.

N

MC—cychs

Figure 10: In the parallel tempering algorithm swaps between simulations running at
different temperatures are possible. In this example, there are three different temperature
levels and adjacent levels exchange transition pathways.

Parallel tempering can be used to sample transition pathways analogously. Path-
ways are harvested in parallel at N different temperatures T1,Ts,---,Tx. Shooting
and shifting moves are complemented with exchange of pathways between differ-
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ent temperature levels. Appropriate acceptance rules satisfying detailed balance
can be easily derived [23]. A short sequence of exchange move between three dif-
ferent temperature levels is schematically depicted in Fig. 10. Parallel tempering
not only improves sampling efficiency at each temperature level, but also provides
temperature-dependent results at basically no extra cost. The structure of this
algorithms is ideal for implementation on massively parallel computers.

To test parallel tempering in conjunction with transition path sampling, we
have applied it to a simple toy model toy model. In this two dimensional system
(see Fig. 11), a "molecule” is immersed in a fluid of purely repulsive disks. The
molecule consists of three atoms bonded with harmonic springs that repel each
other at short distance. All atoms have the same mass and size and the systems
evolves according to Newton’s equation of motion. Initial conditions are weighted
by a canonical distribution. The triatomic molecule can reside in two stable states:
state A, in which atoms 1, 2, and 3 are arranged in a clockwise manner (as in Fig.
4), and state B, in which the arrangement is counter-clockwise. The two stable
states are distinguished with the order parameter ¢ = (y12213 — Z12y13)/r12, Wwhere
rig = (.’L‘2 —T1,Y2 — yl) and ri3 = (x3 —T1,Y3 — yl) are the vectors from atom 1 to
atom 2 and from atom 1 to atom 3, respectively. The order parameter ¢ measures
the position of particle 3 with respect to particles 1 and 2.

o 0

OQ D

Figure 11: A molecule (dark gray) of three two-dimensional atoms with short range repul-
sion and connected with harmonic springs is immersed in a fluid of purely repulsive disks.
The molecule can reside in two long lived stable states differing in atom order.

Fluid atoms act as a heath bath for the triatomic molecule, providing activa-
tion energy for transitions between states A and B and dissipation to stabilize the
molecule following a transition. Three different pathways connect states A and B.
In each of them a different atom of the molecule squeezes its way through the gap
formed by the other two atoms. In each of the transition states the three atoms are
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collinear with a different atom at the center.

We have studied transitions between states A and B with transition path sam-
pling in the canonical ensemble. For the parameters used in the simulation the
energetic barrier separating states A and B has a height of =~ 22¢ in Lennard-Jones
units. We used a total of 16 particles (including the atoms of the molecule) with
periodic boundary conditions. If the sampling is ergodic, i.e., if all relevant regions
in the space of all transitions paths are visited, one expects that the three classes
of pathways occur with the same frequency. However, such ergodic sampling is ob-
served only at temperatures larger than k7T ~ 1.0e. For lower temperatures, the
sampling is effectively confined to one of the three transition states, even for sim-
ulations of more than 10% cycles. Results of these simulations are shown in Fig.
12.

These results demonstrate that parallel tempering can enhance sampling con-
siderably. Without parallel tempering severe sampling problems occur for 8 =
1/kgT > 1. With parallel tempering, all path space regions are visited with the
correct probability.

3.7 Generating an Initial Path

Generating an initial transition pathway is an important step in the application of
the transition path sampling methodology. In the simplest case an initial trajectory
connecting A and B can be obtained by running a long molecular dynamics (or
stochastic dynamics) simulation. For most applications, however, the rarity of tran-
sition events rules out this straightforward approach and an initial trajectory must
be created artificially. The specific way to generate such a trajectory is highly de-
pendent on the problem one wants to study, but in general it produces an atypical
trajectory with a low weight in the transition path ensemble Pap[z(7)]. Start-
ing from such a newly created trajectory, transition path sampling equilibrates the
pathway towards the more important regions of trajectory space. This procedure
is similar to those used to start a conventional Monte Carlo simulation. Imagine,
for instance, that one wants to study a simple atomic liquid. If a typical configura-
tion from the liquid state is unavailable, one can construct an initial configuration
by placing the atoms on the sites of a periodic lattice. Obviously, such a regu-
lar configuration is atypical for the liquid phase, but repeated applications of the
Monte-Carlo procedure, perhaps first at high, then at lower temperature, carry the
system quickly to the important parts of configuration space. Similarly, transition
path sampling can start from an artificial pathway which does not even need to be
a true dynamical trajectory. Then, repeated application of the Monte Carlo proce-
dures described move the pathways towards more typical regions of pathways and
the actual transition path sampling can begin.

A more systematic way to create a new transition pathway is to gradually change
the ensemble P4p[z(7T)] from one which includes all trajectories starting in A (with-
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Figure 12: Fraction of transition pathways of type 1, 2, and 3 found in the simulations as
a function of 8 = 1/kgT. The panel on the top shows the results obtained without parallel
tempering. The bottom panel depicts the results of parallel tempering simulations with 20
temperature levels.
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out restrictions on the end point) to one which consists only of trajectories starting
in A and ending in B. As will be discussed in Sec. 4, conversion of one path en-
semble into another is computationally demanding and in most cases more efficient
ways to generate an initial trajectory exist.

In some situations, high-temperature pathways can be used to initiate a transi-
tion path sampling run. Consider, for example, the folding/unfolding of a protein.
At physiological temperatures, a protein in its native states unfolds only very rarely
on a molecular time scale. At higher temperatures, however, unfolding occurs so
quickly that it can be simulated with ordinary molecular dynamics simulations [63].
Such a high temperature trajectory can then be used to start a transition path sam-
pling run at the temperature of interest. If high temperature transition pathways are
qualitatively very different from those at lower temperatures it might be necessary
to carry out a systematic cooling procedure, in which the ensemble of pathways if
brought to lower temperature in small steps.

In other cases, one may have some, possibly incomplete notion of a reaction
coordinate. Controlling this presumed reaction coordinate one might be able to
drive the system from A to B obtaining a chain of states from which shooting and
shifting moves can be initiated. In our experience no general recipe exists for the
generation of an initial trajectory. Rather, specific procedures must be developed
for this purpose for each application of the transition path sampling method to new
problem.

3.8 Transition Path Sampling with an Existing Molecular Dynam-
ics Program

Transition path sampling based on the shooting and shifting algorithms can be
easily implemented using existing molecular dynamics (MD) programs. One might,
for instance, desire to conduct transition path sampling studies using a commercial
molecular dynamics package for which the source code is unavailable. This is most
conveniently done by by developing a separate path sampling module and interfacing
it with the existing MD program through system calls and input/output to and from
disk.

In such combination of an existing MD program with a new path sampling
module, a deterministic shooting move, for instance, can be carried out as follows. In
the path sampling module a time slice is first selected from the existing path which
is stored in memory or on disk. Next, the corresponding momentum is changed
according to the rules described in Sec. 3.1. and the modified phase space point
is written to a file from which it can later by read by the MD program. Then, a
forward shot is carried out by first writing the desired number of integration steps
into the input file of the MD program and then starting the MD program via a
system call. The MD program integrates the equations of motion and stores the
resulting trajectory segment on disk. Note that it is not necessary to store every
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time step of the new trajectory. Rather, it sufficient to store the new trajectory only
at a smaller number of regularly spaced points. When the trajectory is completed,
control returns to the path sampling module which reads the forward trajectory
from disk and verifies whether the last state of the new path, :c(n), lies within region
B. If it does not, the move is rejected. Otherwise, one proceeds with the backward
part of the shooting move. For this purpose, one inverts the momenta of the time
slice from which the forward shot was initiated and the modified time slice is again
written to a file. Then, the number of backward integration steps is specified in
the appropriate input file and the MD program is again started with a system call.
After that the newly generated backward trajectory segment is read by the path
sampling module and the momenta along this segment of the trajectory are inverted
such that they point forward in the whole path. The shooting move is completed by
accepting it if the new initial point, x(()"), is in region A and rejecting it otherwise.
A summary the algorithm for shooting moves in a path sampling interface is given
in Scheme 7

In a shifting move the path sampling code is interfaced with the existing MD
program in an analogous way. A Fortran code originally developed as a path sam-
pling interface to the Car-Parrinello molecular dynamics code CPMD [64] can be
downloaded from the web site http://gold.cchem.berkeley.edu/~tpath. Modifica-
tions necessary to use this interface in combination with other molecular dynamics
packages are straightforward.

4 COMPUTING RATES AND REVERSIBLE WORK

Because trajectories harvested by transition path sampling are true dynamical path-
ways, they can be used to compute dynamical observables. For transitions between
two stable states A and B, the most important observables are rate constants k4p
and kp4 for forward and backward transitions, respectively. In this section we show
how rate constants can be calculated by, in effect, reversibly changing ensembles of
trajectories. We accomplish this transformation by extending the importance sam-
pling techniques discussed in previous sections. The calculation of rate constants
with transition path sampling thus does not require an understanding of reaction
mechanism, offering a significant advantage over conventional methods.

The standard prescription for computing a rate constant k4p is a two-step pro-
cedure, based on the perspective of transition state theory. It requires the choice
of a putative reaction coordinate, ¢, and its success depends on the validity of that
choice. In the first step, one computes the reversible work W (g) to bring the system
from stable state A to a surface, ¢ = ¢*, dividing A and B. Here, ¢* is the value of
g for which the free energy W (q) is locally maximal, so that ¢ = ¢* approximates
the transition state surface. From the computed reversible work the transition state
theory estimate of the rate constant, krgr, can be determined for the particular
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10.

11.

(0)

. Randomly select time slice x;,’ for shooting.

M) 1o disk.

Modify momenta and write time slice x;

Write number of integration time steps for forward shot into input
file of MD-code.

. Start MD-code with system call.

. Read newly generated forward trajectory segment from disk.

(n)

- Reject move if new endpoint £ not in B and proceed with next

point otherwise.

(n)

Invert momenta of time slice Ty and write modified time slice to

disk.

. Write number of integration time steps for backward shot into

input file of MD-code.

. Start MD-code with system call.

Read newly generated backward trajectory segment from disk and
invert momenta.

If new initial point x(()n) is in A, the path is accepted, and rejected

otherwise.

Scheme 7: Shooting algorithm with existing molecular dynamics code.
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choice of g,

(lg]) . (lal)
Here, ¢ is the time derivative of the reaction coordinate q. The estimate krsT is
accurate to the extent that reactive trajectories cross the surface ¢ = ¢* only once
during a transition. In the second step of the procedure, corrections to transition
state theory are computed by initiating many fleeting trajectories from the ¢ = ¢*
surface. The fates of these trajectories determine the time dependent transmission
coefficient,

exp{—SW(q")} (75)

2 (dodlgo — ¢*10(g: — g*))
D (dlg0 — q*])
where ¢; is the reaction coordinate at time ¢ and 6(z) is the Heaviside step function.
Since after a short transient time 7,0 fleeting trajectories started from the dividing
surface are committed to one of the stable states, x(t) becomes constant in the time
range Tyol < t < Tyxn. This plateau value of x(t) is the transmission coefficient .
Note that in the reactive flux formalism regions A and B are adjacent. The plateau
value in the product of the reactive flux

K(t) = (76)

k(t) = K:(t) kTsT (77)

is a formally exact expression for the (classical) rate constant k4p. The practical
utility of this “reactive flux” method depends on the size of x. For the optimal choice
of g, i.e., the true reaction coordinate, k is maximized and is typically near unity if
the crossing of the dynamical bottleneck is not diffusive. In this case, hundreds of
fleeting trajectories are sufficient to determine x to within, say, 10 percent. For a
poor choice of g, on the other hand, k < 1, leading to severe numerical problems. In
this case, even thousands of fleeting trajectories are insufficient to distinguish x from
zero. This failure reflects the fact that states with ¢ = ¢* are poor approximations of
true transition states. Most trajectories passing through these states are therefore
not reactive.

Preceding sections described how reactive trajectories may be harvested without
a priori knowledge of a reaction coordinate. In a similar way, it is possible to compute
rate constants accurately without this knowledge. In the next section, we begin by
identifying the central time correlation function of kinetics as a ratio of partition
functions for different ensembles of trajectories. As such, it may be considered as
the exponential of a work, specifically the work to reversibly confine the final state of
a trajectory to the product state B. The rarity of transitions ensures that this work
is large, so it cannot be computed directly. Instead, we borrow and extend well-
known techniques from the statistical mechanics of configurations, namely umbrella
sampling and thermodynamic integration. With these techniques, and a convenient
factorization reminiscent of that in the reactive flux method, rate constants can be
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calculated with reasonable computational cost even when the underlying mechanism
is not well understood. We will conclude this section by discussing the question of
how to find the path length ¢ necessary to allow sampling of all important transition
pathways. Note that all formulas and algorithms presented in this section are equally
valid for stochastic and deterministic dynamics.

4.1 Population Fluctuations

In a system at equilibrium, the populations of stable states A and B fluctuate in
time due to spontaneous transitions between them. The dynamics of transitions are
therefore characterized by the correlation of state populations in time:

Ct) = : (78)

Here, (...) denotes an average over the equilibrium ensemble of initial conditions.
C(t) is the conditional probability to find the system in state B at time ¢ provided
it was in state A at time 0. According to the fluctuation-dissipation theorem [65],
dynamics of equilibrium fluctuations are equivalent to the relaxation from a nonequi-
librium state in which only state A is populated. At long time and length scales,
these nonequilibrium dynamics are described by the phenomenology of macroscopic
kinetics. Thus, the asymptotic behavior of C(t) is determined by rate constants k4p
and kp4. At long times, and provided that a single dynamical bottleneck separating
A from B causes simple two-state kinetics,

C(t) = (h)(1 — exp{—t/Texn})- (79)

In this equation, Ty, = (kap + kpa)~! is the reaction time of the system.

At short times, C(¢) will reflect microscopic motions in the transition state re-
gion, which are correlated over a time scale 7y,01. Tmol is essentially the time required
to cross the dynamical bottleneck separating the stable regions and commit to one of
the stable states. Equation (79) links the reaction time 7., measured experimentally
with the microscopic correlation function C(¢). When time scales are well-separated,
i.e., Tmol < Trxn, C(t) scales linearly in the intermediate regime,

Ct) ~ kagt. (80)

The slope of C(t) in this region is the forward reaction rate constant k4p.

In general, C(t) contains all the information needed to determine kinetic coef-
ficients measured experimentally. In following sections, we describe the calculation
of C(t) using transition path sampling. Once C(t) is determined for times greater
than 7,0, rate constants can be extracted by analysis of C(t).
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4.2 Reversible Work

In the context of transition path sampling, the time correlation function in Equ.
(78) is naturally written in terms of sums over trajectories:

_ [Da(t) ha(eo)Pla(lk(ze) _ Zas(t)
JDa(t) hawo)Pla(t) Za

The second equality in the above equation follows from the definition of partition
functions for ensembles of trajectories (see Equ. (3)). Specifically, Z4p(t) is the
partition function for the ensemble of trajectories that begin in region A and end
in region B a time ¢ later. Similarly, Z4 is the partition function for the ensemble
of all trajectories that begin in region A without any restriction on the endpoint at
time ¢t. Z4 is written without time argument because the dynamical weight P[z(t)]
is normalized, so that Z4 = [ dzo p(zo)ha(xo) is just the equilibrium probability to
find the system in state A. While Z4 “counts” all trajectories with initial points in
A, Zsp counts only those trajectories which start in A and end in B.

The partition function Z4 transforms into the partition function Z4p if the
constraint hp(x;) on the endpoint of the path is introduced. We therefore interpret
the ratio of partition functions in Equ. (81) as the exponential of a reversible work
Wap(t) to change between these two ensembles,

ZAB(t)
Zas

C(t)

(81)

WA B = — In (82)
Wap(t) is an effective change in free energy, describing the confinement of trajectory
endpoints z; to region B, while preserving the constraint that initial points zg lie
in region A. Provided this confinement process is carried out reversibly, the corre-
sponding work is independent of the specific procedure used. In the next section,
we describe an advantageous choice for this process that is closely related to the
method of thermodynamic integration.

4.3 Umbrella Sampling

For ensembles of configurations, changes in free energy that are large compared to
kpT are often computed by introducing an artificial bias potential, U(z) [41, 44, 65].
In the simplest cases, U(z) is chosen so that the appropriate importance sampling
visits rare but interesting states with the same frequency as typical equilibrium
states. Differences in free energy may then be computed directly, and correcting
for the presence of U(z) is straightforward. When the relevant phase space is very
large, it is generally more efficient to implement umbrella sampling by dividing
space into a series of overlapping regions, or “windows” [65]. In this case, the i-th
bias potential confines the system to the i-th window, and ensures uniform sampling
within the window. The distribution of states in the entire space is then constructed



TRANSITION PATH SAMPLING o7

by requiring that distributions within windows are consistent in overlapping regions.
These methods are readily generalized to the sampling of trajectories.

In order to make explicit the correspondence between umbrella sampling of con-
figurations and umbrella sampling of trajectories, we consider a schematic exam-
ple. Imagine that an order parameter A(z) successfully distinguishes between stable
states A and B. For concreteness, suppose that these states are two different con-
formers of a single molecule. In the first conformational state, A has a certain range
of values, M4, < A < Al . A distinct range of values characterizes the second
conformer, AB, < X\ < AB__ with AB, > X1 . We could compute the reversible
work, wpg, to confine the molecule to the latter conformational state using umbrella
sampling in the conventional way. The total range of A is first divided into narrow
windows, A() — A/2 < X < A0+ 4+ A/2. Here, A is a small, positive quantity en-
suring that adjacent windows overlap. The corresponding bias potential for the i-th
window, U®(z), is infinite for A < \®) — A/2, as well as for A > A+1D) 4 A/2. For a
wise choice of the window boundaries A(3), the distribution of A, P(\), will not vary
considerably within each window. Within a window, then, P(\) may be accurately
computed up to a constant of proportionality with straightforward importance sam-
pling. These proportionality constants are obtained by demanding continuity in
the intervals of overlap between adjacent windows. Finally, wp is calculated by
appropriate integration over the order parameter distribution,

ABax
wp = —kpTln / T AAP(). (83)
AL,

Umbrella sampling for ensembles of trajectories can be carried out in close anal-
ogy to the procedure described above. For the purpose of computing rate constants
(in this case the rate of conformational transitions), we focus on computing the
reversible work to confine trajectories’ endpoints to state B, given that these tra-
jectories begin in state A. P4()\,t) is defined to be the distribution of A at the
endpoints of trajectories initiated in A,

PA(S\,t) _ JDz(t) hA($0)7DZ[j(t)]5[’\ — A(zt)] _ <5[5\ — Az)]) 4 (84)

Here, (...)4 denotes an average over all pathways beginning in state A. As before,
we divide the range of lambda into narrow, overlapping windows . Each window
corresponds to a region W/[i] in phase space. Within each window, P4(\,t) can be
computed accurately up to a constant of proportionality using the methods described
in Sec. 3. Specifically, importance sampling is used to harvest trajectories according
to the path weight functional

Pawl=(t)] = plzo) Plz(t)ha (o) by (). (85)

The path ensemble P 4yy(;)[x(t)], which consists of pathways starting in A and ending
in the window region W(i].
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The distribution of the order parameter A in region W[i] is

< I Dx(t) ha(zo)Plz(t)]hwpi (@) S[X — A(4)]
Pawa(X.8) = TD(t) hoa (o) i (@)

= (6] — M@)]) awvpi- (86)

Since Payyy;) is the ensemble distribution function for pathways with endpoints in
region WI[i] the distribution Pyyy;;(A,t) can have non-vanishing values only in the
order parameter range corresponding to W([i| and must vanish for all other values
of A. As can be seen by comparing Equ. (84) with Equ. (86), inside window 7 the
distribution P4yyp;1(A, t) with path endpoints restricted to region WYi] is proportional
to the complete order parameter distribution P4(A,t) obtained as an average over
pathways with unrestricted endpoints. By matching the distributions Pyyyp;(A, 1)
in the overlapping regions one can thus obtain the complete distribution P4 (), ).
To reduce the number of required windows it is sometimes convenient to introduce
a bias in the sampling. Of course, such a bias must be appropriately corrected for
in the calculation of path averages.
By integrating this distribution function over those values of the order parameter
A belonging to region B one can obtain the probability to find the endpoint of a
path starting in A in B at a time ¢ later:
B
C(t) — <hA(-’L'0)hB($t)> _ /’\max d\ PA(A’t)_ (87)
{ha) M
Accordingly, the reversible work required to confine the endpoint of paths starting
in A to region B is,

.
Was(t) = —In / A Pa(A ), (88)
A

where we have used the fact that P4 (), t) is normalized.

Figure 13 shows the results of an umbrella sampling path sampling simulation
carried out to determine C(t) for proton transfer in the protonated water trimer
described in section Sec. 1. The curves in the top panel are the distributions
Payy[i(A, t) restricted to the window regions W/[i]. In this case the order parameter
A(z) was defined as the angular difference A¢ = po — @1, where the angles ¢; and
w2 were defined as indicated in Fig. 2. Requiring continuity of P4(A,t) where the
regions W(i] overlap one obtains the distribution P4(),¢) shown on a logarithmic
scale in the bottom panel. The correlation function C(t¢) is then determined by
integration of P4 (A, t) over values of A corresponding to the final region B.

4.4 A Convenient Factorization

In principle, the time correlation function C(t) may be calculated by repeating the
procedure described above at each time ¢. But this umbrella sampling of trajectories
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Figure 13: Top panel: Distributions of the order parameter A in the window regions W[i]
for proton transfer in the protonated water trimer. In this calculation the energetics of the
trimer were described by an empirical valence bond model [66]. The solid lines denote the
individual distributions and the open circles mark points where adjacent order parameter
windows overlap. Each distribution was obtained by sampling Newtonian transition path-
ways of length ¢ = 147fs with shooting and shifting moves at an energy corresponding to a
temperature of T' & 290K. The order parameter A used in this illustrative calculation was
defined as the angle difference Ap = ¢y — 1, where p; and @, are angles describing the
geometry of the OOO-ring of the cluster (see Fig. 2). Region A was defined by Ap < —10°
and region B by Ay > 10°. Lower panel: The distribution P4(A,t) shown on a logarithmic
scale is obtained by requiring continuity at the overlap of adjacent windows. In the lower
panel regions A and B are indicated by vertical dotted lines. Integration of P4(\,t) yields
C(t) =9.8 x 10717,
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is laborious, requiring independent sampling of pathways for each window of the
order parameter. Indeed, it mimics a quasi-static process in which the constraint on
trajectory endpoints is introduced reversibly. Repeating this process many times,
and especially for long trajectories, would incur significant computational cost. In
this section we describe a far less expensive scheme for computing C(¢) in a time
interval 0 < t < T, requiring that umbrella sampling be performed only once and
only for relatively short trajectories.

In the last section, we took advantage of the relationship between C(¢) and an
effective reversible work, W4p(t), to constrain the state of a system at time ¢. In
effect, we gradually applied this constraint to the ensemble of trajectories of length
t that begin in state A, obtaining a new ensemble of reactive trajectories. Here,
we consider a different process connecting the same two ensembles of trajectories.
Because this process is also reversible, it involves the same work Wp(¢). In the
new process, trajectories of length 7 > ¢ that begin in state A are first constrained
to visit state B at a time #'. The behavior of these trajectories at times later than
t' is unconstrained. The work associated with this first step is thus W4 p(t'), and it
may be computed using umbrella sampling. In the second step, the time at which
trajectories are constrained to visit state B is shifted from # to ¢. We denote the
work associated with the second step as AW (¢;t'). We will show that AW (¢;¢') can
be computed for all ¢ at once with little cost, by sampling trajectories that visit
state B at any time prior to 7. As a result, computing the total work,

Wag(t) = Wag(t') + AW (1), (89)

for all times ¢ requires umbrella sampling only for a single time #'. In addition, the
time ¢’ may be chosen to be small, further reducing the computational cost.

The free energy AW 45(t,t') required to change the length of reactive trajectories
can be written in terms of the ratio of correlation functions,

exp(-AWan(t,¢)) = i = PEAIIAB ), o

To simplify our notation we introduce the ratio

R(t,t) = : (91)

where we assume that ¢’ < t.
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To calculate R(t,t") we first need to define the path functional Hp[z(7)] which
is unity if at least one state along the trajectory x(7) of length 7 is within B and
vanishes otherwise,

Hyla(T)) = max hy(s). (93)
0<i<T
Since this function Hp[z(7T)] vanishes only if hp(z;) vanishes for all z; with 0 <
t < T and is unity otherwise we can insert it into the averages of Equ. (91). Then,
multiplying numerator and denominator with (ha(zo)Hp[z(7)]) we obtain

{ha(zo)hp (=) Hplx(T)]) {ha(zo) Hplx(T)])

) = @) Bola(TY)) ™ (o) o) Hp ()]}

(94)

Each of the factors in this equation can be written as an average over pathways
starting in region A and visiting region B in the time interval [0, 7],

(hp ()Y = 1220 ha(zo) Ple(T)lhs (20) Hlo(T)]
AB =" TDL(T) ho(wo) Pla(T ) Hp[z(T)]

(95)

These pathways connect region A with region B, but are not required to end in B.
Their weight functional is

Paplz(T)] = ha(zo)Pla(T)Hplz(T))/Z45(T) (96)

where

Z3p(T) = [ Do(T)ha(eo) PLa(T) Hala(T)) (o7)

normalizes the path distribution.

The path distribution P} z[z(7)] can be sampled with the algorithms described
in Sec. 3 where in all acceptance probabilities the function hg(z;) must be replaced
with the indicator function Hg[z(7)]. Also, in this case efficiency can be increased
by growing the backward segments of a shooting move first, because only in this
case early rejection can be exploited to reduce the computational cost of shooting
moves.

The ratio R(¢,t") can be determined efficiently for all times ¢,#' < 7 in a single
path sampling run,

*
R(t,) = <hB($f))fB_ (98)
(hp(zi))ap
As a result, the correlation function C(¢) can be computed in the interval [0, 7] in
a two step procedure. First, the average (hp(z:))% is determined in the interval
[0,7] from a single transition path sampling run. If (hp(z:))% g displays a linear
regime one can proceed with the second step in which the value of the correlation
function C(t') is determined for a particular time ¢’ with the umbrella sampling
methods described in section 4.3. To increase the efficiency of the calculation ¢’ can
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be chosen to be much shorter than 7. Combination of these two steps yields C(¢)
in the whole interval of interest,

(o)) oy
O = ey <O N

The rate constant can then be obtained from the plateau value of the time derivative
of the correlation function C(t),

_dC(t) _ (hp(z))as '

k(t) = &~ (hulwe))s, x C(t"), (100)

where the dot indicates a time derivative. It is important to emphasize that the

time correlation function C(t) is calculated exactly in the transition path sampling

method and that no assumption about an underlying separation of time scales is

made. Rather, the specific form of C(t) can reveal whether such a separation exists.
The algorithm for the calculation of rate constants is summarized in Scheme 8.

1. Calculate the path average (hp(z:))%p using the transition path
ensemble P g[z(?)]-

2. Determine the time derivative d(hp(z¢))% g/dt.

3. If d{hp(z:))% g/dt displays a plateau, proceed with step 4, oth-
erwise repeat procedure with a longer time ¢ starting from step
1.

4. Calculate the time correlation function C(t') at a specific time #'
in the interval [0, ¢] with umbrella sampling.

5. Determine C(t) in the entire interval [0,¢] using C(t) =
C(#)(hp(t) 4/ (ha(t"))ap-

6. Take the derivative of C(t) and extract the rate constant k4p from
the plateau value of C(t).

Scheme 8: Algorithm for the calculation of transition rate constants.

The result of the first step of a rate constant calculation in the transition
path sampling method are shown in Fig. 14 for proton transfer in the proto-
nated water trimer. Panel (a) depicts the path average (hp(t))% s as a function
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of time. Initially (hp(t))%p is zero because pathways must cross a gap separat-
ing region A from region B. At least 50 femtoseconds are necessary to cross this
gap. After this time, (hp(t))%p starts to grow and reaches a linear regime af-
ter about 200 femtoseconds. Panel (b) of Fig. 14 shows the time derivative of
(hp(zt))p, which displays a plateau after 200 femtoseconds. A plateau value of
(hp(t)) 5 plateau = 0-34x 10 2fs~! can be inferred from the figure. To calculate the
rate constant k4p we now use the time correlation function C(#') = 9.83 x 10717
obtained by umbrella sampling for a particular time ¢’ = 147fs (see Fig. 13). Note
that ¢’ can be smaller than 7 and does not even need to be in the linear regime.
At ' the path average (hp(t))% z = 0.16. Combining these values according to Equ.
100 we obtain a rate constant of k4p = 2.1 x 1035~ 1.

4.5 Correspondence with Reactive Flux Theory

The factorization of C(t) introduced in Sec. 4.4 is reminiscent of the factorization
used in conventional rate constant calculations [3]. In both cases, a reversible work
calculation is needed to compute the correlation of population fluctuations at a
specific time. The remaining time dependence of correlations can be computed
independently of the absolute scale, and at much less cost. For the reactive flux
method, a reversible work calculation at time 0% corresponds to transition state
theory. (Trajectories of zero length do not recross the dividing surface ¢ = ¢*.) In
the method based on transition path sampling, the specific time at which C(t) is
calculated remains arbitrary. In fact, this resemblance is more than superficial. For
a particular choice of the boundaries defining states A and B, the two factorization
schemes are identical.
Imagine that states A and B are adjoining. In other words, the dividing surface
q = ¢* forms the boundary of both states: ha(q) = 6(q—¢*) and hp(q) = 0(¢* —q).
In that case,
Ct) = k(0")t = krgrt’ (101)

for short times #'. The second equality follows from the fact that the transition state
approximation for the rate constant, krgr, equals the reactive flux k(¢) at time 0.
Similarly,

dt R
Thus, the time derivative (hp(z;))%p normalized by its value at ¢ = 0T is the
transmission coefficient of reactive flux theory. Therefore the factorization of reactive
flux theory expressed in Equ. (77) and the factorization used in the transition path
sampling method and expressed in Equations (92) and (100) are equivalent up to
factors of ¢ and 1/¢'.
Note that, regardless of the particular definition of the boundaries of A and B
(as long as they encompass typical fluctuations in the two states and do not overlap,

tl ~(t) (102)
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Figure 14: (a) Path average (hp(t))* g for proton transfer in the protonated water trimer
computed directly in a transition path simulation (solid line) and from the distribution of
transition times (dashed line). The average was obtained by sampling Newtonian transition
pathways of length ¢t ~ 390fs at a total energy equivalent to a temperature of T~ 290K.
Region A was defined by Ap < —10° and region B by Ay > 10°. (b) Time derivative of the
(hg(t))ap curves shown in panel (a). The time derivative reaches a plateau only for times
larger than the longest transition time 7, i.e, for times larger than about 200 fs.
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etc.), the asymptotic behavior computed by path sampling is consistent with the
results obtained using the reactive flux formalism. It is only for transient behavior
that the specific definition matters.

4.6 How Long Should Pathways Be?

In harvesting transition pathways, it is important that trajectories are long enough
to exhibit typical barrier crossing behavior. Trajectories that are constrained to
connect stable states in a very short time may not be representative of the natural
ensemble of reactive trajectories. In this section we discuss quantitative criteria
for the appropriate minimum length (in time) of trajectories. These criteria are
based on the condition that correlations of population fluctuations have reached
their asymptotic behavior. They are thus related to the corresponding condition for
the reactive flux method, namely that the flux is essentially constant on a molecular
time scale. Depending on the chosen boundaries of stable regions, however, the
appropriate duration of trajectories can be quantitatively different for transition
path sampling.

In general, regions A and B defined in transition path sampling are not adjacent
and the system must cross a gap between these regions during a transition. For
instance, the results depicted in Fig. 14 were obtained from calculations in which
region A was defined by Ay < —10° while region B was characterized by Ay > 10°.
Since in general the reaction coordinate describing the course of the transition is
unknown it is important that regions A and B do not overlap and do not contain
states belonging to the basin of attraction of the other stable region. Due to the
associated finite width of the gap the system needs a certain finite transition time 7
to cross the gap. Therefore, the pathways in transition path sampling must be long
enough to accommodate the transition times 7 of the most important pathways.
In the following paragraph we will justify and analyze this requirement in greater
detail.

Consider, again, a system in which, rarely, transitions from A to B occur. Along
each possible pathway z(7) of length 7 the system spends a certain time 74[z(7)] in
A, then stays between A and B for a time 7[z(7 )], and finally arrives in B spending
the rest of the time, 7p[z(7)], there. For simplicity we assume that there are no
multiply entries and exits to and from regions A and B. Hence, every pathway z(7)
has a single well defined transition time 7[z(7)]. Since different pathways have
different transition times it is convenient to introduce a distribution of transition
times,

p(7T) = / Da(T) Pagle(T6(F — r[z(T))), (103)

where the argument 7 in p(7;7) indicates that the distribution of transition times
depends on the total path length 7 . As an example for such a distribution Fig. 15
shows p(7; T) for proton transfer pathways in the protonated water trimer described
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in Sec. 1. As can be inferred from the figure, the system needs at least ~ 50fs to

cross the gap and some trajectories spend up to 200fs in the region between A and
B.
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Figure 15: Distribution of transition times 7 for proton transfer in the protonated water
trimer for the same system as in Fig. 14.

Now, the path average (hp(z:¢))% 5 appearing in the expressions for the rate con-
stant in Equ. (99) can be expressed as an integral over the distribution of transition
times p(7; 7). Analysis of that expression then yields a criterion for the path length
T can be derived.

To demonstrate this we rewrite Equ. (95) as

(hp(z))an = /Dw(’f) Paple(T0E — r[2(T)] — ralz(T)]), (104)

where hp(z;) for the specific pathway z(7") has been expressed using the Heaviside
step function 6(¢). In doing so we have assumed that trajectory z(7) leaves region
A and enters region B exactly once. We next insert two Dirac delta functions into
the right hand side of the above equation and integrate over their arguments:

(ho(@is = [ &7 [ dia [ Da(T) Pagla(TYO( — rla(T)) = 7ale(T))

x6(7 = rlz(T))o(7a — Ta[=(T)]) (105)

The delta functions allow us to replace the functionals 7[z(7)] and 74[z(7)] ap-
pearing in the argument of the Heaviside step function by the numbers 7 and 74,
respectively. We therefore obtain

(hi (@) g = / dr / drab(t — 7 — 7A)p(r 745 T), (106)
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where we have renamed the integration variables. The distribution function p(r,74;7)
is the probability to observe both 7 and 74 in a path with length T,

p(r7a;T) = /Dw(T) Paplz(T)o(7 — 7la(T))(7a — Talx(T)])- (107)

For a given transition time 7 the time 74 spent in region A can have values ranging
from 0 to T'— 7. Assuming that 74 is uniformly distributed in this interval and that
it is furthermore statistically independent from 7, i.e.,

(T — 1 —74)0(74)
T—7

one can carry out the integration over 74 obtaining

p(r,74;T) = p(1;T), (108)

t—T1
T-—7

Thus, the contribution to (hp(z:))% 5 of pathways with transition time 7 is zero for
0 <t < 7 and grows linearly from 0 to 1 in the interval 7 < ¢ < 7. The path
average (hp(z:))% g computed from Equ. (109) for proton transfer pathways in the
protonated water trimer is shown along with its time derivative in Fig. 14 as dashed
lines. The excellent agreement of these results with the results obtained in a path
simulation directly indicates that the assumptions made in Equ. (108) are correct
for the example system.

.
(hs(z0))p = /0 dr p(r; T)O(E — 7) (109)
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Figure 16: Transmission coefficient x(t) as a function of time for the same system as in
Fig. 15. After a molecular transient time of less than 100 fs x(¢) reaches a plateau.

Equation (109) can be used to obtain a criterion on the path length required
to sample all important pathways. According to the reasoning of the preceding
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sections, pathways are sufficiently long if the time derivative k(t) = dC(t)/dt reaches
a plateau. But according to Equ. (100), k(t) can reach a plateau only if (hp(x:))% 5
does so. In this plateau regime the first derivative of (hp(z:))% 5 is constant and its
second derivative must vanish. Calculating the second time derivative of (hp(z:))% 5
from Equ. (109) we obtain

2 .

o ()i = A7) (10
As a consequence, k(t) can reach a plateau value only if the path length 7 is
larger than the maximum transition time Ty, after which the distribution of tran-
sition times p(7;7) vanishes. More exactly, the existence of a plateau requires that
p(7)/(T — 7) vanishes in the whole plateau regime. The maximum transition time
Tmax can be considerably larger than the molecular transient 7, from reactive flux
theory. For instance, Tmax =~ 250 fs for proton transfer in the protonated water
trimer as can be inferred from Fig. 15 (and from Fig. 14). In contrast, the time
dependent transmission coefficient r(¢) shown in Fig. 16 indicates that a trajectory
initiated from the dividing surface defined by A¢ = 0 commits to one of the stable
states in less than 100fs. In general, the path length should therefore be chosen to
be larger then the maximum transition time or the time necessary to commit into
one of the stable states, whichever is larger.

5 ANALYZING TRANSITION PATHWAYS

Thus far, we have described efficient methods for harvesting pathways that exhibit
transitions of interest. We have also detailed how these trajectories may be used to
characterize reactive dynamics at a macroscopic level by computing rate constants.
In this section, we focus on gleaning mechanistic information from harvested path-
ways, in order to understand transitions at a microscopic level. For complex systems,
this task is made challenging by the huge number of irrelevant degrees of freedom.
It is generally not possible to recognize the coordinate that describes a transition’s
progress simply by visualizing trajectories (for example, using computer graphics)
or by following the behavior of preconceived order parameters. Rather, identifying
such a reaction coordinate requires a thorough statistical analysis of pathways and
transition states. Here, we describe several concepts and diagnostics that facilitate
this analysis.

5.1 Reaction Coordinates and Order Parameters

A coordinate that successfully distinguishes between two basins of attraction does
not necessarily characterize the dynamical bottleneck between them. We emphasize
this fact by referring to discriminating coordinates as order parameters, and reserving
the term reaction coordinate for the specific coordinate that describes a transition’s
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dynamical mechanism. This distinction is illustrated in Fig. 17. For the free energy
landscapes in both panels of the figure, the coordinate ¢ serves as a reasonable order
parameter. Specifically, the range of values of ¢ in the basin of attraction of state A
does not significantly overlap the range of values in the basin of state B. As a result,
the reduced free energy w(q), obtained by integrating out the orthogonal coordinate
¢, has a pronounced maximum, located at ¢ = ¢*. But the utility of ¢ as a reaction
coordinate differs greatly in the two scenarios. In the left panel, the ensemble of
configurations with ¢ = ¢* is a good approximation to the transition state surface
dividing the basins of attraction. Here, ¢’ is essentially irrelevant to the dynamical
bottleneck, and g may be accurately called the reaction coordinate. In the right
panel, however, barrier crossing occurs primarily in the direction of ¢’. Typical
configurations with ¢ = ¢* are poor approximations to true transition states, lying
well within the basin of attraction of state B. In this case, the order parameter q does
not coincide with the reaction coordinate. This latter situation is in fact common
in physical systems. For example, symmetry and density successfully characterize
fluid and solid phases of a simple material, but the bottleneck for crystallization
of a supercooled liquid involves the size and structure of a crystal nucleus [68, 69].
One should thus not expect order parameters in general to function as reaction
coordinates.

5.2 The Separatrix and the Transition State Ensemble

In a simple system, saddle points of the potential energy surface coincide with tran-
sition states. At these stationary points, forces vanish, and the system is not driven
to either of the corresponding stable states. In other words, the stable states are
equally accessible from the transition state. This concept of equal accessibility is
readily extended for complex systems, in which individual saddle points are no longer
relevant for transitions of interest. Specifically, transition states are defined to be
configurations from which the system relaxes into one or the other stable state with
equal probability [27, 70]. Transition states defined in this way are generally unre-
lated to the local topography of the potential energy surface, and may be strongly
influenced by entropy. The set of all such transition states forms the separatriz, a
high-dimensional surface dividing basins of attraction.

In order to formalize this definition of the separatrix, we introduce a function
pa(r,ts) called the committor:

(r 1) = J Dz(ts) Plz(ts)])d(ro — r)ha(zs,)
PAN L) = D (#,) Pla(ts)]o(ro — 1)

(111)

Since transition probabilities are normalized, the denominator on the right hand side
of this equation is just the equilibrium probability distribution for configuration r.
pa(r,ts) is the the probability that a system with initial configuration r will reside
in state A at time ¢;. The analogous committor for state B, pp(r,ts) is similarly
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qa ¢ gB ¢ g4 ¢ 9B ¢

Figure 17: Two illustrative two dimensional free energies w(q,q') depending on two
variables ¢ and ¢', and their corresponding reduced free energy functions w(q) =
—kgT'In [ dq' exp[—pw(g,¢')]. In both cases w(g) has the same bistable form, but in (a)
the coordinate q is a reasonable reaction coordinate, as the transition state surface coincides
with ¢ = ¢*. In (b), on the other hand, ¢ is not at a reasonable reaction coordinate. The
orthogonal variable ¢’ is crucial for the mechanism of A — B transitions, and the maximum
in w(q) at ¢ = ¢* does not coincide with the transition state surface. The dashed trajectories
initiated at configurations with ¢(r) = ¢* and all ending in B illustrate this.
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defined. If the time scale of molecular fluctuations, 7, is well separated from
the typical time between spontaneous transitions, 7ixn, then ps and pp will be
nearly independent of ¢ for 7 < ts € Tyxn- In this time regime, a trajectory
will have committed to one or the other basin of attraction, even if it originated
in the transition state region. Once such a trajectory has committed, subsequent
spontaneous transitions are unlikely for ¢; < 7Tyy,. In the discussions that follow,
we assume that ¢; has been chosen in this asymptotic regime, and omit the explicit
dependence of committors on time. With this choice, p4 and pp are essentially
functions only of a configuration r, quantifying the propensity of that configuration
to relax into a particular basin of attraction under the system’s intrinsic dynamics.
States A and B are thus equally accessible when p4(r) = pp(r). This equation
defines the separatrix.

The committor pp is a direct statistical indicator for the progress of transitions
from A to B. In this sense, it is an ideal reaction coordinate. But interpreting
this highly nonlinear function of atomic coordinates in terms of molecular motions
and intuitively meaningful fields is not straightforward. Understanding a transi-
tion’s mechanism basically amounts to identifying the simple, low-dimensional co-
ordinates that determine pp. Following sections are concerned with this task. We
first describe an efficient scheme for locating the separatrix, and then introduce un-
ambiguous diagnostics for verifying the determinants of pg. These tools greatly aid
the interpretation of trajectories harvested by transition path sampling, but are not
unique to that methodology. Indeed, any proposed reaction coordinate must satisfy
the statistical criteria we describe below.

5.3 Computing Committors

Locating the separatrix by screening typical configurations for p4 =~ pp would be
an extraordinary computational challenge. Not only are such configurations rare
at equilibrium, but evaluating committors requires the generation of many fleeting
trajectories for each tested configuration. Fortunately, the pathways harvested by
transition path sampling are guaranteed to include examples of the separatrix. In
collecting a properly weighted ensemble of transition states, it is only necessary to
screen the configurations along these relatively short, reactive pathways. Transition
paths may even cross the separatrix more than once. In this case, each crossing
provides a valid example of the transition state ensemble. Such multiple crossings
are not uncommon in complex systems. For instance, isomerization pathways of an
alanine dipeptide cross the separatrix up to seven times [17].

The computational cost of identifying transition states is further reduced by the
fact that configurations far from the separatrix may be excluded rather quickly.
In practice, pg(r) is estimated for a particular configuration by initiating a finite
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number N of fleeting trajectories, 2 (¢), from that configuration:

1Y ;
Py (r) = 572 ha(ai)). (112)
i=1

where we imagine that initial momenta are drawn at random from the appropriate
distribution. This procedure is graphically illustrated in Fig. 18. For large N,
pSBN) (r) is a Gaussian random variable according to the central limit theorem, with

fluctuations of size

o= —puy) = P2, (13)

Here, (...) indicates an average over many independent calculations of p%N). These

fluctuations describe the typical errors in our estimate of pp using a finite number of
fleeting trajectories. The same fleeting trajectories z(® (t) may be used to estimate
pa. For simplicity, we assume here that p4 + pp = 1, i.e., there are no additional
basins of attraction. In this case, the error in our estimate of p4 is identical to
that for pp. In this case, typical errors are only of size 0 ~ /pp/N < 1 when
pa ~ 1. Similarly, when pp = 1, 0 ~ \/pa/N < 1. We may thus determine that
a configuration lies deep within the basin of attraction of A or B with a relatively

small number of trajectories. (Of course, N must be large enough that pE4N) and

pgv) may be considered Gaussian random variables. N = 10 should be sufficient for
this purpose.) By contrast, when pp ~ p4 = 1/2, typical errors are only small for
large N. Determining that a configuration lies near the separatrix thus requires a
large number of fleeting trajectories.

The dependence of fluctuations in pE4N) and p%N) on p4, pp, and N suggests
a general scheme for estimating committor values. A desired level of statistical
accuracy, 04es, 18 chosen in advance. This choice determines the number of fleeting
trajectories required to screen a given configuration. A minimum number, Ny, of
trajectories is first generated to ensure Gaussian statistics. Additional trajectories
are subsequently generated until the error estimate

N N
Ny _ P (1 - pi") (114)

N

o

is smaller than o4es. At this stage, the configuration is excluded from the transition
state ensemble if the interval [pgv) —aocM), psgN) + aa™)] does not include the value
1/2. The constant o depends on the desired confidence level. For instance, o = 2 is
necessary to obtain a confidence level of 95%. If 1/2 is inside the interval, we continue
generating trajectories until the value 1/2 falls outside the confidence interval. If

a maximum number, Ny, of trajectories is reached, and the confidence interval
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Figure 18: The committor pg for a time slice at time ¢ along a transition path (thick solid
line, top panel) is computed by determining the fraction of fleeting trial trajectories (dotted
curves) initiated with randomized momenta that reach region B in a time t;. Typically
10-100 of these fleeting trajectories are needed to obtain p4 and pp with sufficient accuracy.
While pp ~ 0 for the left time slice in the top panel, because all trajectories started from
that time slice end in A, pp = 1 for the time slice on the right, because all the corresponding
fleeting trajectories end in B. The configurations for which pg ~ 1/2 & p4 are part of the
separatrix (thick dashed line) and are called transition states.
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still includes 1/2, then the configuration is accepted as a member of the transition
state ensemble. This procedure, summarized in Scheme 9, minimizes the effort of
excluding configurations that are far from the separatrix, and yields a consistent level
of statistical error. As a rule of thumb, an error of 5% requires that Ny, ~ 100
trajectories are generated for configurations in the transition state region.

1. Start with a time slice just outside state region A

2. Generate Ny, ~ 10 short fleeting trajectories from that time slice
with momenta selected from the appropriate distribution.

3. Determine pp from the fraction of paths that end in state B.

4. If the interval [pSBN) —aocM), pSBN) +ao™)] does not include 1/2 the

time slice is rejected as a member of the transition state ensemble,
otherwise more fleeting trajectories are generated until either 1/2
is in [pSBN) - aa(N),pSBN) + ao™)] or an upper limit Ny, of the
number of fleeting trajectories if reached.

5. If the latter is the case, the time slice is accepted as a member of
the transition state ensemble. Otherwise it is rejected.

6. Move to the next time slice on the path and repeat steps 2 to 4
until region B is reached.

Scheme 9: Algorithm for determining transition states on a transition path.

Our definition of a committor in Equ. (111) is applicable to both stochastic and
deterministic dynamics. In the case of deterministic dynamics, care must be taken
that fleeting trajectories are initiated with momenta drawn from the appropriate
distribution. As discussed in Sec. 3.1.2, global constraints on the system may
complicate this distribution considerably. The techniques described in Sec. 3.1.2
and in the Appendix of Ref. [10] for shooting moves may be simply generalized to
draw initial momenta at random from the proper equilibrium distribution.

5.4 Committor Distributions

By screening transition pathways for examples of the separatrix, as described in the
previous section, an ensemble of transition states may be collected. For complex
systems, this ensemble is expected to be structurally diverse, reflecting the many
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ways a particular transition can occur. But the reduced dimensionality of the sep-
aratrix ensures that even seemingly dissimilar transition states will share certain
patterns. One may begin to search for these patterns by examining the distribu-
tion of various order parameters within the transition state ensemble. Coordinates
that are important to the dynamical bottleneck will be narrowly distributed about
values distinct from those characterizing stable states. In other words, they will
be correlated with the transition. Such a correlation does not, however, guarantee
that an order parameter is a useful reaction coordinate. Indeed, it is common for
many coordinates to follow a transition adiabatically. These coordinates undergo
a discernible change on the course from reactants to products, but do not play a
significant role in driving the transition.

Distributions of committor values are a powerful diagnostic for differentiating
coordinates that drive a transition from those that are simply correlated with it.
Consider an order parameter ¢ whose potential of mean force w(g) has a maximum
at ¢ = ¢*. If g serves as a reaction coordinate, then the ensemble of configurations
with ¢ = ¢* coincides with the separatrix (see Fig. 19a). The committor distribution
for this ensemble,

(6[pB — pB(r,t)]d[g* — q(r)])
(d[g* — q(r)]) '

is thus sharply peaked at pg = 1/2. If, on the other hand, ¢ does not characterize the
dynamical bottleneck, most configurations in the ensemble with ¢ = ¢* lie within the
basins of attraction of states A and B (see Fig. 19b). In this case, the distribution
of pp is dominated by peaks at pp = 0 and pgp = 1. These two scenarios are
distinguished by markedly different committor distributions. Fig. 19 illustrates
scenarios for three different schematic free energy surfaces.

P(pp) = (115)

In practice, determining informative committor distributions is a two-step pro-
cess. The first step consists in generating configurations with the constraint ¢ = ¢*.
Various Monte Carlo and molecular dynamics methods have been designed for this
purpose [44, 71]. In the second step, the committor pp is determined for the col-
lected configurations, using the methods described in the previous section. From
these committor values a histogram P(pg) can then be constructed. The algorithm
for determining committor distributions is summarized in Scheme 10.

As an example, consider again proton transfer in the protonated water trimer as
depicted in Fig. 2. Imagine, then, that the difference Ar = r; —r9 in the distances of
the transferring proton to the oxygens of the donating and accepting water molecule
has been postulated as the reaction coordinate for the proton transfer. (r; and ro
are defined as indicated in Fig. 2). Calculation of the reversible work necessary
to control Ar yields a free energy profile with two minima separated by a barrier
centered at Ar = 0. The minima of this free energy are located at values of Ar
characteristic for the two stable states in each of which a different oxygen atom
holds the excess proton. The committor distribution for configurations with Ar = 0,
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PB

Figure 19: Three different free energy landscapes w(q,q'), the free energy w(g*,q') for
g = ¢* and its corresponding committor distribution P(pg). (a) The reaction is correctly
described by ¢ and the committor distribution of the constrained ensemble with ¢ = ¢*
peakes at pp = 0.5. (b) ¢' plays a significant additional role as a reaction coordinate,
indicated by the additional barrier in w(g*,¢') and the bimodal shape of P(pg). (c) Similar
to case (b), but now the committor distribution is flat, suggesting diffusive barrier crossing
along ¢'.
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1. Compute the free energy w(q) as a function of the proposed reac-
tion coordinate q.

2. Determine the position ¢* of the free energy maximum.

3. Collect a series of independent configurations at the top of the
barrier, i.e., ¢ = ¢*.

4. Calculate the committor pp for every configuration.

5. Construct a histogram P(pp).

Scheme 10: Algorithm for determining a committor distribution.

i.e., configurations atop the barrier, is sharply peaked at 0 and 1 indicating that
essentially all of these configurations clearly belong to the basin of attraction of one
of the two stable states. Thus, the variable Ar is unable to capture the essential
dynamics of the transition as the system passes through the dynamical bottleneck.
Indeed, as discussed earlier, we found that a functioning reaction coordinate, such as
the angular difference Ay defined earlier, must include degrees of freedom capable
of describing the reorganization of the oxygen ring. The variable Ar merely follows
this reorganization adiabatically without having any significant correlation with the
transition dynamics. Committor distributions computed for configurations with
Ap = 0 peak at pp = 1/2 confirming the efficiency of Ay as a reaction coordinate.

This methodology has been also used to extract subtle mechanistic details of the
dissociation mechanism of an NaCl ion pair in liquid water Ref. [12]. In this case
committor distributions revealed that rearrangement of solvent molecules around the
dissociating ion pair significantly contributes to the free energy barrier separating
the contact state from the dissociated state.

5.5 Path Quenching

Scrutinizing path ensembles for common factors can be a difficult task for several
reasons. First, the paths are all different on a molecular scale due to thermal motion.
Secondly, there might be different global pathways that are hard to distinguish. It
would be helpful when the path ensemble could be somehow smoothed by removing
all irrelevant dynamics orthogonal to the reaction coordinate, and reveal the essential
dynamics of the optimal pathway. This smoothing can be done by path quenching.
The idea behind this technique is that the path sampling method performs a random
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walk in trajectory space and is usually confined to a basin of attraction within this
trajectory space. (This basin of attraction must be distinguished from the basis of
attraction in configuration space, i.e. the stable regions A and B.) Each basin of
attraction in path space can be characterized by a minimum value of the action as
defined in Sec. 3.5. Quenching a path then amounts to minimizing this path action.
In this way, different global pathways then correspond to different local minima in
the action. As defined in Sec. 3.5, the action Sap[z(7)] is related to the probability
of finding a path by

Pplz(T)] = exp(=Saslz(T))). (116)

The analogy to the canonical Boltzmann distribution exp[—(V (z)] allows sampling
of the path ensemble using the dynamical algorithms of Sec. 3.5. Exploiting the same
principle one can use this dynamical algorithm to find the minimum action by sliding
downbhill in trajectory space. This amounts to quenching the 'path temperature’ to
zero, which leads to a local minimum in path space. There might be many local
minima, and in that case annealing the paths to find the nearest global minimum
is probably a better option. For Newtonian dynamics with a canonical distribution
of initial conditions quenching the path action corresponds to finding the transition
path with the lowest energy.

6 OUTLOOK

Transition path sampling reduces the computational cost of harvesting reactive tra-
jectories to that of generating dynamical paths of microscopic duration. Because
its general methodology makes no reference to specific details of a dynamical sys-
tem, we expect to see it widely applied. Indeed, examples of successful applications
already include chemical reactions in the gas phase and in solution, nucleation of
phase transitions, and diffusion of hydrocarbons in zeolites. We anticipate many
more.

Some classes of applications will be made challenging by subtle difficulties in the
implementation of transition path sampling. One such challenge is the identifica-
tion of order parameters that unequivocally distinguish between basins of attraction.
As discussed in Sec. 2.6, failure to discriminate between stable states may lead to
sampling of pathways that are not truly reactive. In many cases, physical intu-
ition, combined with trial and error, is sufficient to determine a reasonable order
parameter. But in general, characterizing stable states with only a few variables is
a significant problem of pattern recognition. A similar problem arises in character-
izing transition state surfaces. Even when many examples of the separatrix can be
collected with the methods of Sec. 5.2, identifying a successful reaction coordinate
remains a challenge. A systematic approach to pattern recognition is lacking. Gen-
eralizations of standard methods for linear analysis [72] may offer progress in this
area.
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Sampling long trajectories is also a challenge. When the minimum duration of
reactive trajectories (described in Sec. 4.6) is longer than the time scales character-
izing chaos in a deterministic system, shooting moves will fail to generate useful trial
trajectories. Due to divergence of neighboring phase space elements, a typical trial
path will differ markedly from the original path, even for the smallest possible mo-
mentum displacements. Most trial paths will therefore not be reactive, and thus will
be rejected. Analogous difficulties hinder the sampling of strongly damped stochas-
tic paths. When inertia is essentially inconsequential, only shooting points near the
separatrix will generate reactive trajectories with a reasonable probability. In this
case as well, sampling efficiency is severely degraded by the rejection of nearly all
trial paths. It seems that a new genre of trial moves is necessary to confront these
problems. One might imagine introducing a bias that imposes correlations between
an existing path and trial trajectories generated from it.

For systems that are extremely large or complex, generating trajectories of even
microscopic duration is computationally unfeasible. Clearly, harvesting true dy-
namical pathways of these systems is not possible. One might still hope, however,
to construct chains of states that qualitatively resemble reactive trajectories. The
stochastic path approach of Elber and coworkers [29, 73] focuses on such pathways.
This method utilizes a weight functional for large time step trajectories that would
normally be grossly unstable. The instability is artificially suppressed by the re-
quirement that paths connect two given stable states. Although the stochastic path
approach greatly extends the range of systems that can be considered, the pathways
it generates are in some ways fundamentally dissimilar from natural trajectories:
The effective dynamical propagation rule violates the fluctuation-dissipation theo-
rem, and does not conserve an equilibrium distribution. It is not clear how to remedy
these serious shortcomings while preserving the computational frugality that makes
the method appealing. Transition path sampling may offer a more controlled context
for this kind of approach.

In the course of future applications of our methods, we expect that many of the
above difficulties will be overcome. Others’ experience and insight will be essential
for these advances. We also expect to see the perspectives underlying transition path
sampling to be exploited in novel ways. An ensemble view of trajectories is especially
promising for the studying dynamical structures like those of supercooled liquids
[75, 74]. One can imagine that changes in relaxation patterns as a system approaches
the glass transition are best captured using a ”thermodynamics” of trajectories.
While it is not obvious how to obtain simplifying insight into this thermodynamics
(analogous to, say, van der Waals’s picture of fluids), the ideas and formalism we
have presented here would seem to be a first step.
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