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■ Abstract This article reviews the concepts and methods of transition path sam-
pling. These methods allow computational studies of rare events without requiring prior
knowledge of mechanisms, reaction coordinates, and transition states. Based upon a
statistical mechanics of trajectory space, they provide a perspective with which time
dependent phenomena, even for systems driven far from equilibrium, can be examined
with the same types of importance sampling tools that in the past have been applied so
successfully to static equilibrium properties.

INTRODUCTION

During the past several years, we and our coworkers have developed a general com-
putational method for finding the transition pathways for infrequent events in both
equilibrium and nonequilibrium systems (1–14). The method requires no precon-
ceived notion of mechanism or transition state. Called “transition path sampling,”
it is metaphorically akin to throwing ropes over rough mountain passes, in the dark.
“Throwing ropes” in the sense that one shoots short trajectories, attempting to reach
one stable state from another. “In the dark” because high-dimensional systems are
so complex that it is generally impossible to literally visualize the topography
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of relevant energy surfaces. In such cases, it is unlikely that the first throw of
the rope will be successful, but one can learn from failures; and there should be
an optimum procedure, i.e., sequence of throws, with which success is obtained
efficiently. We have discovered and demonstrated this type of sequence, opening
the way for many heretofore impossible computational studies of the dynamic
pathways of chemical and physical transformations in clusters and in condensed
materials.

RARE BUT IMPORTANT EVENTS IN COMPLEX SYSTEMS

DISPARITY OF TIMESCALES Often, dynamical processes of interest occur on time-
scales that are very long compared to the shortest significant timescale. For exam-
ple, the dissociation of a weak acid in water might occur with a half-life of, say,
1 ms, while elementary steps of molecular motions in water occur in 1 fs. Similarly,
timescales for folding the smallest of proteins are in the range of microseconds to
milliseconds, whereas that for small-amplitude motions of amino acid side chains
and water solvent is again 1 fs.

This wide disparity of timescales can present serious computational challenges.
For instance, consider a computed trajectory for a system containing a weak acid
molecule and a bath of a few hundred water molecules. Within one or two orders
of magnitude—depending on computing equipment and algorithm—1 s of com-
putation time is required to advance the system for what would correspond to 1 fs
of physical time. As such, typically 1012 s of computing time seems to be required
to find one example of an event leading to acid dissociation. A representative
sampling of pathways to dissociation would therefore seem to be an impractical
computational task.

TRANSITION STATE THEORY One way to get around this problem is to focus on
the dynamical bottleneck for the rare event—the transition state surface. In a rare
event, it is this surface or threshold that is rarely visited and thus rarely crossed. If its
location is known, however, one may construct a scheme where the system is first
moved reversibly to the transition state surface and then many fleeting trajectories
are initiated from that surface. The first step determines the reversible work and
thus the probability for reaching the transition state, and the subsequent trajectories
determine the probability for successfully crossing the threshold. Together, they
give the rate for the rare event. This approach was pioneered by Anderson (15),
Bennett (16), and Chandler (17). It has been recently reviewed by Anderson (18),
and a tutorial on it has been written by Chandler (19). Elementary discussions are
found in textbooks [e.g., References (20, 21)]. Although theoretically sound, this
two-step procedure is limited in applicability because it presupposes knowledge
of the transition state. In most interesting cases, transition state surfaces are not
known and not easily characterized.

DIFFICULTY OF IDENTIFYING TRANSITION STATE SURFACES For low-dimensional
systems involving only a few atoms, transition state surfaces usually intersect
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saddle points in the potential energy surface. In those cases, transition state sur-
faces can be identified with various algorithms that examine gradients of the po-
tential energy surface and systematically search for saddle points on that surface
(22, 23). For higher-dimensional systems, however, the potential energy surface
will typically contain many saddle points, most if not all of which are irrelevant
to the dynamics that carries the system from one stable (or metastable) state to
another. Figure 1 illustrates this point. Explicit enumeration of saddle points is fea-
sible for a cluster of the order of ten or fewer atoms, but this enumeration provides
no means to distinguish saddle points that are dynamically irrelevant from those
that are dynamically relevant. For complex chaotic systems—large polyatomic
molecules, large clusters, condensed phases, and so forth—potential energy sur-
faces are rough on the scale of thermal energies,kBT , and dense in saddle points.
Effectively, therefore, there is generally an uncountable number of saddle points.
Searching for a few such points is therefore insufficient and likely irrelevant. In-
stead, one wants to locate and sample the ensemble of true dynamical bottlenecks.
This task can be accomplished with transition path sampling.

TRANSITION PATH SAMPLING

IMPORTANCE SAMPLING The basic idea is a generalization of standard Monte
Carlo procedures (20, 21, 24, 25) that focuses upon chains of states constituting dy-
namical trajectories (26) rather than upon individual states. In its standard form, a
Monte Carlo calculation performs a random walk in configuration space. The walk
is biased to ensure that the most important regions of configuration space are ade-
quately sampled. Specifically, in a Monte Carlo random walk, configurationx is vis-
ited in proportion to its probabilityp(x). The walk may be initiated far from a typi-
cal configuration [i.e.,x far from values ofx where the weight fromp(x) is largest],
but after some equilibration period, the bias drives the system to those important
regions of configuration space. This feature is crucial to the success of Monte Carlo
sampling. It is called importance sampling and is illustrated in Figure 2.

Importance sampling can be generalized to trajectory space, as we have done
to create the methods of transition path sampling. Consider the ensemble of all
trajectories that are, say, 1 ps long. Most of these trajectories will be localized near
some basin of attraction—a long-lived collection of neighboring microstates. Rare
transition state crossings will comprise a small subset of these 1-ps trajectories.
For example, if the process of interest occurs roughly once every millisecond, then
only one out of a billion 1-ps trajectories will exemplify that process. Transition
path sampling provides an efficient means to sample such rare subensembles.

IMPORTANCE SAMPLING OF TRAJECTORY SPACE Let us suppose the rare processes
of interest are transitions between states or regionsA andB. These regions are
characterized by their respective population operators,hA(χ ) andhB(χ ). Here,χ
denotes a point in phase space—configuration space and momentum space com-
bined. (The applications of transition path sampling discussed in the following
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Figure 2 In a Metropolis Monte Carlo simulation, one generates a random walk in
configuration space according to the probability distributionp(x) ∝ exp[−V(x)/kBT ].
If the distribution were that of a canonical ensemble,V(x) would denote the potential
energy for configurationx. Along this walk, a new configurationx′ is generated by
displacing the old configurationx by a randomly chosen small step,1. Thenx′ is
accepted or rejected. If the step goes downhill in energy, i.e., if the new configuration
has a higher probability than the old one,x′ is always accepted. Uphill moves, on
the other hand, are only accepted with a probabilityw(x,1) p(x′)/p(x)w(x′,−1),
wherew(x,1) is the distribution for the random step,1, given the configurationx. In
this way, barriers of the order ofkBT or smaller do not hinder the random walk, and
a system will move quickly to configurations of high probability (the lightly shaded
region) even when initiated far away from that important region in configuration space.

sections of this review use characteristic functions of configuration space,x, only,
but this limitation is not required.) Whenχ is within regionA, hA(χ )= 1, other-
wise,hA(χ ) = 0. The corresponding population operator for regionB, hB(χ ), is
similarly defined. Transitions between regionsA andB coincide with trajectories
connecting these regions. A trajectory of time durationt, χ (t) = (χ0, χ1, . . . , χt ),
is a chronological sequence of phase space points generated by repeated applica-
tion of a dynamical propagation rule. Trajectories we imagine are consistent with
Liouville’s equation or one of its analogues (27, 28). Namely, they must be re-
versible, must preserve the norm of the distribution of states, and must preserve an
equilibrium distribution. For simplicity, but not for necessity, we might be consid-
ering deterministic dynamics, in which caseχt is entirely determined by the initial
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phase space point,χ0. The statistical weight for the rare trajectories connecting
A andB is hA(χ0)ρ[χ (t)]hB(χt ), whereρ[χ (t)] is the unconstrained distribution
functional for trajectories. For deterministic trajectories,

ρ[χ (t)] = ρ(χ0)
∏

0<t ′≤t

δ[χt ′ − χt ′ (χ0)], 1.

whereρ(χ0) is the unconstrained distribution of initial phase space points,χ0. Tran-
sition path sampling is done by carrying out a random walk in trajectory space,
biased to be the importance sampling for the distributionhA(χ0)ρ[χ (t)]hB(χt ).
Figure 3 illustrates how it is done in a practical and simple fashion.

In this perspective, stable or long-lived statesAandBmust be well characterized
at the outset. This characterization can be difficult, as we discuss below. Never-
theless, we see that nothing need be presupposed about the dynamical pathways

Figure 3 Illustration of “shooting moves,” generating a random walk in trajectory
space for Newtonian trajectories connecting regionsA andB. For example, trajectory
2 is generated by changing trajectory 1 by a small amount. This change can be accom-
plished, for example, by first choosing a time slice pointτ lying between 0 andt. At this
time slice, the momentum of trajectory 1 can be altered by some small randomly chosen
amount. The resulting new momentum can be used along with the configuration of tra-
jectory 1 at timeτ as the initial conditions for a new trajectory created by propagating
forward from that phase space point fort−τ steps and backward from that phase space
point forτ steps. Because regionsA andB remain connected, this second path will be
accepted as the new trajectory, provided the value ofρ(χ0) for the new trajectory com-
pares favorably with that for the first trajectory. Specifically, the probability to attempt
a step from a trajectoryχ (t) = (χ0, χ1, . . . , χt ) toχ ′(t) = (χ ′0, χ

′
1, . . . , χ

′
t ) is the joint

probability for choosing time sliceτ and assigning a momentum changeδ at that time
slice,w(χ, τ, δ). The acceptance probability for that trial step is min[1, w(χ, τ, δ)
hA(χ ′0) ρ(χ ′0) hB(χ ′t )/hA(χ0)ρ(χ0)hB(χt )w(χ ′, τ,−δ)]. By the same type of procedure,
trajectory 3 is generated from trajectory 2. This time, however, the new path does not
connectAandB, and it is rejected. This sequence of acceptances and rejections ensures
that the correct path ensemble is sampled—namely, the ensemble that is weighted by the
distributionhA(χ0)ρ(χ0)hB(χt ). There is great flexibility in the choice of random walk
steps. This flexibility can be exploited in efforts to improve the efficiency of transition
path sampling. In practice, shooting moves are only one of several moves employed in
transition path sampling. References (2, 10, 62) describe other useful moves.



5 Apr 2002 12:52 AR AR155-11.tex AR155-11.SGM LaTeX2e(2001/05/10)P1: GSR

296 BOLHUIS ET AL.

(i.e., trajectories) that join these states. This feature is the major strength of the
method. Transition path sampling is a random walk through the ensemble of all
paths connectingA andB. From studying the trajectories visited during this walk,
the nature of the dynamical pathways is discovered.

COMPUTATIONAL COST The computational effort in carrying out a transition path
sampling calculation scales linearly with the number of trajectories harvested. This
scaling is optimum. In particular, to harvestN statistically independent transition
pathways of lengtht requires the same order of effort as that required to perform
a single trajectory of lengthN. In practice, random moves like those illustrated
in Figure 3 are accepted with probabilities between 0.1 and 0.5. In addition, the
correlations in that random walk persist typically for only two or three accepted
moves. Thus, for instance, 1000 statistically independent 1 ps trajectories are ob-
tained with roughly the same computational resources required for a single straight-
forward trajectory of length 1–10 ns. The straightforward trajectory, however, will
almost certainly not show an example of a rare event occurring on the timescale of,
say, 1 ms, while each of 1000 transition path trajectories will exhibit an independent
example of the event.

INITIAL TRAJECTORY Before the sampling of typical transition paths begins, one
requires a representative member of the ensemble of trajectories with distribu-
tion hA(χ0)ρ[χ (t)]hB(χt ). This member, i.e., this first example of a typical trajec-
tory linking regionsA andB, can be obtained in a variety of ways. All of these
ways coincide with some sort of equilibration run. The situation is much like
that encountered in standard Monte Carlo. In that case, the Monte Carlo walk
is initiated at some chosen configuration. The configuration may be far from a
typical equilibrium configuration, as illustrated in Figure 2. Nevertheless, after re-
peated steps in the random walk, each one satisfying detailed balance, the system
eventually reaches the region of typical equilibrium configurations. It is at this
point where equilibrium sampling is initiated. Similarly, in transition path sam-
pling, one may begin with literally no concept of a reasonable dynamical trajectory.
Any initial path can be drawn to initiate an equilibration run. After equilibration,
i.e., after the walk through trajectory space begins to visit trajectories typical of
the weight functionalhA(χ0) ρ[χ (t)] hB(χt ), sampling can begin.

For example, suppose trajectories connecting regionsA andB are easily found
in a dynamical simulation run at a temperatureT ′, but the actual temperature of
interest,T, is much smaller thanT ′. In other words, suppose one has examples of
trajectories taken from the distributionhA(χ0) ρ[χ (t); T ′] hB(χt ), but one wants to
sample the distributionhA(χ0) ρ[χ (t); T ] hB(χt ). One may use the high-temperature
trajectory taken from the former and initiate an equilibration run with the latter.
If there is poor overlap between the distributionsρ[χ (t); T ′] and ρ[χ (t); T ], this
run may be done in stages, lowering the temperature by only a fraction ofT ′ − T
at each stage.
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Some initial paths may be farther from the desired ensemble than others, and
some equilibration walks may be slower than others. Nevertheless, this illustrations
shows that there is great flexibility as to how one may proceed. We discuss this
point further below.

REVERSIBLE WORK

Standard Monte Carlo sampling of microstates follows from the principles of equi-
librium statistical mechanics, and quantities computed from it are thermodynamic
properties. Similarly, transition path sampling follows from a statistical mechan-
ics of trajectory space, and quantities computed from it are dynamical properties,
like rate constants. The two techniques share an important similarity—namely,
they both move through their respective spaces (configuration space and trajectory
space) in fashions that preserve their prescribed distributions. In other words, they
both obey conditions of detailed balance. This similarity can be used to establish
an isomorphism between thermodynamical quantities and dynamical properties.
The isomorphism is of practical importance because it makes accessible to the
study of dynamics all the computational advantages of methods used to determine
the statistics of rare configurations in an equilibrium system.

REVERSIBLE WORK IN EQUILIBRIUM STATISTICAL MECHANICS To illustrate the iso-
morphism, consider first the traditional connection between thermodynamics and
equilibrium statistical mechanics. The partition function associated with a ther-
modynamic stateA, ZA, is the sum over the configurations that characterize state
A weighted by the distributionp(x), i.e., ZA =

∑
xhA(x) p(x). (In the context

of equilibrium statistical mechanics, we define states in terms of configurational
variables,x, rather than phase space variables,χ .) The reversible work to move
from thermodynamic stateA to thermodynamic stateB, WAB, is the free energy
difference between those states. Namely,

exp(−WAB/kBT) =
∑

x hB(x) p(x)∑
x hA(x) p(x)

, 2.

or WAB = −kBT ln(ZA/ZB). In addition, for a system with distributionp(x),
exp(−WAB/kBT) is the probability that the system is found in stateB relative
to that of being found in stateA. As such, one may efficiently compute the relative
probability for being in stateB, even when this probability is extremely small, i.e.,
even whenWABÀ kBT . In particular, because reversible work is independent of
path, it can be evaluated by moving the system reversibly through an arbitrarily
chosen series of intermediate states. A specific reversible path is created by a spe-
cific series of steps for convertinghA(x) to hB(x). For instance, one can introduce
a class of functions,h(λ)(x), that smoothly interpolate betweenhA(x) at λ = 0 to
hB(x) atλ = 1. For a givenλ, the partition function isZ(λ) =∑x h(λ)(x) p(x), and
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provided thath(λ)(x) has a reasonable overlap withh(λ−1λ)(x), we can also write

Z(λ) =
∑

x

[
h(λ)(x)

/
h(λ−1λ)(x)

]
h(λ−1λ)(x)p(x)

= Z(λ−1λ)
〈
h(λ)(x)

/
h(λ−1λ)(x)

〉
λ−1λ, 3.

where 〈. . .〉λ denotes the average with distributionh(λ)(x)p(x). By applying this
result over and over again, withλ = 1λ, 21λ, . . . ,1, the quantityZB/ZA is
determined. In order to ensure reasonable overlap of adjacent distributions, the
number of steps required in this procedure is of the order ofWAB/kBT, i.e.,1λ '
kBT/WAB. In contrast, a straightforward Monte Carlo sampling ofp(x) will provide
a reasonable estimate of the probability ratio,ZA/ZB, in a computational timescale
of t exp(WAB/kBT), where t is a typical sampling time, such as that to arrive
at reasonable statistics for just stateA. This juxtaposition of linear vs. exponen-
tial computational cost shows that wheneverWABÀ kBT , the stepwise procedure
makes feasible estimates that would be impossible to perform in a straightforward
simulation.

REVERSIBLE WORK FOR CHANGING ENSEMBLES OF TRAJECTORIES With these ideas
in mind, we now consider the “partition function” for trajectories of lengtht con-
necting regionsA andB. Namely,

ZAB(t) =
∑
χ (t)

ρ[χ (t)] hA(χ0) hB(χt ). 4.

The sum overχ (t) denotes the sum over all trajectories (χ0, χ1, . . . , χt ). For de-
terministic trajectories, Equation 4 reduces to

ZAB(t) =
∑
χ0

ρ(χ0) hA(χ0) hB(χt ), 5.

whereχt is determined solely byχ0. This partition function counts the number of
trajectories connectingA andB, weighted by the distribution functional,ρ[χ (t)].
In contrast to this quantity, consider the similarly weighted number of trajectories
that begin inA and end anywhere,∑

χ (t)

ρ[χ (t)] hA(χ0) =
∑
χ0

ρ(χ0)hA(χ0) = ZA, 6.

where the first equality follows from the normalization of the distribution func-
tional, and the second is true whenρ(χ ) is an equilibrium distribution—micro-
canonical, or canonical, or so forth. In that case,ZAB(t) is the time correlation
function, 〈hA(0)hB(t)〉. Here,〈. . .〉 denotes the equilibrium ensemble average over
initial conditions, andhB(t) is the population of stateB at timet. Thus, the ratio of
partition functions,

ZAB(t)/ZA = 〈hA(0)hB(t)〉
〈hA〉 , 7.
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is the probability of finding the system in stateB a timet after it was in stateA. If A
andBare separated by a single dynamical bottleneck, this probability will increase
from 0 to 〈hB〉 with a time dependence that is exponential after a transient time,
τmol. The transient time is the typical time for a trajectory to cross the bottleneck
and commit to one of the two basins of attraction. It is a relatively short time, far
shorter than the exponential relaxation time,τrxn = 1/(kAB+ kBA), wherekAB is
the rate constant for transitions fromA to B, andkBA is that for reverse transitions
(17). As such, the rate constant for transitions fromA to B can be computed as a
ratio of partition functions,

ZAB(t)/ZA = kAB t, τmol < t ¿ τrxn. 8.

The first inequality,τmol < t , establishes the appropriate length for the trajecto-
ries harvested by transition path sampling for the crossing of a single bottleneck.
Trajectories should be long enough to show thatZAB(t)/ZA grows linearly in time.
Trajectories of shorter length will be atypical of the transition path ensemble. In
cases whereB is not reached fromA in typically one step, but through one or more
intermediate long-lived states,ZAB(t)/ZA will not exhibit linear behavior after a
short period of time. This fact provides a criterion that can be used to discover the
existence of intermediate states (2).

The partition functionZAB(t) converts toZA when the population operatorhB(χ )
is converted to unity. Hence,− kBT ln[ZAB(t)/ZA] can be viewed as the reversible
work to change from the ensemble of trajectories initiated inA to the ensemble
of trajectories connecting regionsA andB. Furthermore, this work is independent
of the specific path, provided the steps are taken reversibly. In other words, with
a slight change in notation, the second equality in Equation 3 can apply to the
calculation ofZAB(t)/ZA—namely,

Z(λ)(t) = Z(λ−1λ)(t)
〈
h(λ)(χt )

/
h(λ−1λ)(χt )

〉
λ−1λ 9.

whereh(λ)(χ ) interpolates between 1 atλ = 0 andhB(χ ) at λ = 1, and 〈. . .〉λ
denotes the average over trajectories of lengtht weighted by the distribution pro-
portional tohA(χ0) ρ(χ0) h(λ)(χt ). As such,Z(λ)(t) changes fromZA whenλ = 0
to ZAB(t) whenλ = 1. As in the standard equilibrium case, Equation 3, the dynam-
ical formula (9) is to be applied with a choice ofh(λ)(χ ) that allows for reasonable
overlap between adjacent ensembles. In addition, as in the equilibrium case, the dy-
namical formula (9) provides the basis for computing the desired partition function
ratio with linear rather than exponential computational effort.

STEPWISE ROUTE TO THE INITIAL TRAJECTORY Finally, by converting from the
ensemble where trajectories begin inA to the ensemble where trajectories linkAand
B, the stepwise procedure provides a method for preparing the initial trajectory for
transition path sampling. It is a laborious preparation, moving from one ensemble to
the next. For specific situations, more efficient preparation schemes can be devised,
as we discuss below. Nevertheless, this example, illustrated in Figures 4 and 5,
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Figure 4 Schematic sequence of trajectory ensembles, with distribution function-
als hA(χ0)ρ[χ (t)] h(λ)(χt ), changing fromλ = 0 to λ = 1. Dashed lines surround
regions whereh(λ)(χ ) is nonzero. Forλ = 0, trajectories may end anywhere in
the accessible phase space. Forλ = 1, trajectories must end in stateB. In the ini-
tial stages of the sequence, the transition state surface lies within the region de-
fined by h(λ)(χ ), and typical trajectories remain in the basin of attraction of state
A. In the latter stages, the transition state surface lies outside the region defined by
h(λ)(χ ), so that trajectories must cross the separatrix and typically continue deep
into the basin of attraction of stateB. This scheme will generally succeed at creating
the desired final ensemble of trajectories passing fromA to B, but the scheme is not
satisfactory for computing rate constants. A satisfactory scheme must reach the final
ensemble reversibly. The latter stages of the sequence illustrated in this figure will
usually fail to be reversible, because they do not efficiently sample trajectories that
end near the transition state surface on the side of stateB. To ensure reversibility,
this scheme can be modified to use a sequence of more confined “window” ensem-
bles (4), much as is done with umbrella sampling in equilibrium statistical mechanics
(20, 21, 24, 25). Thei th such window includes only trajectories that end in the region
defined byh(λi−1)(χ )[1 − h(λi+1+1)(χ )]. Here,1 is a small, positive number that al-
lows for reasonable overlap between adjacent ensembles. With appropriately chosen
values forλi , the reversible work is comparable tokBT for each step in this modified
scheme.
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Figure 5 (a) The ratio of partition functionsZAB(t) andZA as a function of timet,
calculated using the scheme illustrated in Figure 4, for the process described in the
section “Isomerization of a Solvated Model Dimer,” below. For times longer than that
required to commit to a basin of attraction (≈τ in this example) but short compared to
the characteristic time of spontaneous transitions, this ratio is a linear function of time.
(See Equation 8.) The corresponding slope, i.e., the plateau value ofd[ZAB(t)/ZA]/dt
in (b), is the rate constant for transitions fromA to B.

indicates that without any prior knowledge of dynamical pathways, manageable
procedures exist for using transition path sampling to harvest transition paths and
to compute rate constants.

UNBAISED DYNAMICS An important feature of transition path sampling is that
harvested paths are true dynamical pathways, unhindered by arbitrarily imposed
forces. Ensembles of paths are prepared by manipulating the constraints that de-
fine the ensembles. These manipulations do not affect the equations of motion
governing the dynamics of the system. Other methods used to build ensembles of
paths connecting basins of attraction introduce unphysical forces that affect the
paths directly and do not preserve the intended equilibrium distribution (29–38).
As such, these other methods harvest paths that are not the actual trajectories of
the system.
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DISTINGUISHING BASINS OF ATTRACTION Often, a significant challenge in tran-
sition path sampling work is the characterization of the stable states. It requires
a choice of discriminating order parameters—variables that uniquely distinguish
statesA andB. Establishing that a variable, sayq, has mostly one range of values
in one state and a nearly distinct range of values in the other is not sufficient. There
must be no overlap between the region spanned byhA(χ ) and the basin of attrac-
tion of stateB, and vice versa. Otherwise, sampling with the weight functional
ρ[χ (t)] hA(χ0)hB(χt ) will fail to harvest trajectories crossing from one basin to
the other. This point is illustrated in Figure 6, and is exemplified by the difficulty

Figure 6 (a) Contours of a free energy surface,F(q,q′), for which the coordinate
q does not successfully discriminate between the basins of attraction of statesA and
B. Although the distributions ofq within A andB do not overlap, some microstates
belonging to the basin of attraction ofA have values ofq characteristic ofB. (b) q as
a function of time for the two trajectories sketched in (a). The trajectory depicted as a
solid line makes a transition fromA to B, passing through the transition state surface.
The trajectory depicted as a dashed line remains within the basin of attraction of state
A, but, when projected ontoq, appears to visit stateB. Transition path sampling with
q as an order parameter would yield primarily trajectories of the latter type, which do
not pass through the transition state surface.
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of sampling pathways for excess proton transport in liquid water. In this appli-
cation, basins of attraction for hydronium ion structures are poorly characterized
by molecular geometries (39) and weights of empirical valence bond states (40).
Day et al. have attempted to circumvent this problem by studying proton transfer,
from a hydronium ion to a nearby water molecule, through an intervening water
molecule (41). Because the order parameter Day et al. use may not distinguish
among the pertinent states, however, it is possible that the trajectories they have
harvested do not represent true proton transfer events. These pathways may com-
prise instead large fluctuations within the basin of attraction of the intermediate
state. In our experience, identifying discriminating order parameters can involve
a significant degree of experimentation, performing transition path sampling with
various choices of order parameters until a satisfactory discriminating choice is
determined.

COMMITTORS, THE SEPARATRIX, AND
THE TRANSITION STATE ENSEMBLE

Harvested transition paths can be examined to determine examples of configura-
tions lying on the transition state surface. This examination is done with the con-
cepts of committors and the separatrix. The committor,pA(x, ts), is the probability
(or fraction) of fleeting trajectoriesχ (ts) initiated from configurationx to end in
stateA a short timets later—namely,

pA(x, ts) =
∑
χ (ts)

ρ[χ (ts)] δ(x0− x) hA(χ ts)/p(x), 10.

where theδ-function has unit weight when the initial configuration of the fleeting
trajectory,x0, coincides withx and is zero otherwise. We often use the abbreviated
symbolpA for the committor, leaving the dependence uponxandts to be understood
implicitly. In the context of protein folding, this object has been calledpF—for
“p-fold”—or (1 − pF), depending on whether the protein ends in a folded or
unfolded state (42, 43). For the sequence of configurations visited in a specific
trajectory connectingA and B, (x0, x1, . . . , xτ , . . . , xt ), pA can be viewed as a
function ofτ. For physical situations where transitions betweenA andB exhibit
the typical timescale separationτmol ¿ τrxn, pA(τ ) will be either 1 or 0, except
for one or a few short periods of time where the function changes between these
two values. As illustrated in Figure 7, the short period(s) coincide with crossing(s)
of the dynamical bottleneck. Thus, meaningful examination of the bottleneck is
obtained from a committor if the short time,ts, is of the order of the commitment
time,τmol. A time slice on a trajectory connectingA andB is committed to stateA
if pB ¿ pA ' 1 for the configuration at that time slice. Here,pB is defined in the
same way aspA. Similarly, a time slice is committed to stateB if pA ¿ pB ' 1.
On the other hand, a time slice wherepA ' pB ' 1/2 coincides with the location
of the bottleneck. It is a configuration on a separatrix—a surface in configuration
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Figure 7 The committor,pA, is computed along a single path in the transition path
ensemble (thick solid line, top panel) by determining the percentage of fleeting trial
trajectories starting from the configuration at time sliceτ (with random momenta)
that has reached regionA in a time t. Typically 10–100 of these fleeting trajectories
are needed to obtainpA accurately. For instance,pA ≈ 1 for the left time slice in the
top panel, because nearly all trajectories started from that time slice end inA. The
configurations for whichpA ' pB are considered transition states.

space where initiated trajectories have equal likelihood of ending in either stateA
or stateB (44).

For a system of few enough dimensions, the separatrix simply locates saddle
points on the potential energy surface—the simplest conception of transition states.
For complex high-dimensional systems, however, saddle points are not necessarily
signatures of dynamical bottlenecks. For such systems, the separatrix provides the
generally applicable definition of a transition state surface (42–44). The definition
is particularly useful in connection with transition path sampling. Suppose the
sampling has been employed to harvestN trajectories connectingA andB. Config-
urations along each of these trajectories can be examined statistically to determine
which configurations havepA ' pB ' 1/2, as illustrated in Figure 7. Each trajec-
tory will pass through one or more such configurations. A given trajectory may
pass through the surface more than once. Those that pass through once exhibit
one barrier or bottleneck crossing. Those that pass through more than once exhibit
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multiple crossings. As such, this analysis will yieldN or more examples of the
transition state surface. Each example is a member of the transition state ensemble.

Access to an ensemble of typical transition state configurations proves useful
for understanding the mechanism of a rare event in a complex system. Relevant dy-
namic variables are usually collective coordinates, and identifying these variables
through explicit visualization of specific dynamic pathways is usually impossible.
In addition, for a many-particle system, there is generally a huge variety of atom-
istic pathways that accomplish the transformation fromA to B. Viewing just one
or a few examples is unlikely to reveal what is typical. Rather, statistical analysis
of the process is needed. An ensemble of transition states provides data for car-
rying out such an analysis. In particular, averaging a dynamical variable over this
ensemble can be compared with averaging the variable over configurations typi-
cal to statesA andB. Substantial differences between the transition state average
and the stable state averages would suggest that the variable is significant to the
mechanism of the transitions betweenA andB. Ascertaining the degree to which
the variable describes the dynamical mechanism in its entirety requires additional
analysis, of the sort we turn to in the next section.

ORDER PARAMETERS VS. REACTION COORDINATES
AND COMMITTOR DISTRIBUTIONS

There is an important distinction between variables that characterize basins of
attraction and variables that characterize dynamical mechanisms. We refer to
the former as “order parameters” and the latter as “reaction coordinates.” Order
parameters are used to construct the population functionshA(χ ) andhB(χ ). Reac-
tion coordinates can be used to define the transition state ensemble. For example,
suppose that a configurational variableq is presumed to be the reaction coordinate.
Its free energyW(q)—the reversible work function for controllingq—is deter-
mined by the partition function for the system when constrained to that value of
q—namely,

exp[−W(q)/kBT ] ∝
∑

x

p(x) δ[q(x)− q]. 11.

Viewing theδ-function in Equation 11 as requiringq(x) to lie in a small but finite
interval,q±1q/2,W(q) can be evaluated in steps, as with the method illustrated
by Equation 3. To the extent thatq is truly relevant to the dynamical mechanism,
W(q) will have a maximum at some intermediate value,q∗, and that value ofq
coincides with the location of the transition state surface. Figure 8 illustrates this
behavior. Of course, ifq is particularly irrelevant, it could exhibit no maximum.
Figure 8 also illustrates the important distinction between order parameters and
reaction coordinates. Even when a variableqserves well to distinguish equilibrium
statesA andB, the location ofq∗ and the value ofW (q∗) may have nothing to do
with the dynamical bottleneck forA → B transitions. Indeed, the transmission
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Figure 8 Two illustrative potential energiesV(q,q′) and their corresponding free
energy functionsW(q) = −kBT ln

∑
q′ exp[−V(q,q′)/kBT ]. (a) The coordinateq

serves as a reasonable order parameter, distinguishing basinA from basinB. It is also
a reasonable reaction coordinate, because the transition state surface coincides with
q = q∗. (b) Here,qmight appear to be a reasonable order parameter because its typical
values in stateA are indeed different than those for stateB, but it is not a discriminating
order parameter. Further, it is not a reasonable reaction coordinate. The orthogonal
variableq′ plays an important role inA→ B transitions, and the maximum inW(q)
at q = q∗ does not coincide with the transition state surface. The dashed trajectory
beginning atq∗ and ending inB illustrates this point.

probability for trajectories launched from theq = q∗ surface of Figure 8b (i.e.,
the fraction of these trajectories that reachA or B without recrossing theq = q∗

surface) will be close to zero.
The illustration in Figure 8b is not far-fetched. Consider the kinetics of a

liquid-vapor phase transition in circumstances where the liquid, for example, is
metastable, and its density,ρl , is much greater than that of the vapor,ρv. The bulk
density of the fluid,ρ, serves as a reasonable order parameter because microstates
with ρ ≈ ρl or ρ ≈ ρv will coincide with the liquid or vapor phase, respectively.
In contrast, the kinetics of forming one from the other will involve the formation
of an interface and critical nucleus—a vapor bubble in the liquid. An illustration
of this dynamic is found in a transition path sampling study of a surface-induced
evaporation (8). The dynamically relevant variables describe the size and shape of
the bubble. These variables are virtually orthogonal to the bulk density. Thus, the
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picture in Figure 8b is a reasonable caricature in this case. Similarly, consider the
dissociation of an ion pair, say Na+ and Cl−, in liquid water. The distance between
the ions,r, can serve as an order parameter, distinguishing the state where the ions
are in contact from the state where they are separately solvated. The free energy or
reversible work function in this case,W(r), is the potential of mean force (21). It
shows a deep minimum at smallr, corresponding to ions in contact, and a barrier
to a stable state at largerr in which the ions are separately solvated (45, 46). The
barrier atr = r ∗ corresponds to a least likely separation of the ions, where no water
can fit between them. Butr ∗ is not a good indicator of the transition state ensemble
as suggested by the low transmission probability for trajectories initiated at states
with r = r ∗ (47, 48). In fact, microstates prepared withr = r ∗most likely coincide
with one or the other of the stable states as shown in Reference (6). The kinetic
mechanism for the ion dissociation involves a fluctuation in the water density
surrounding the ion pair, creating space for the ions to move apart and inserting
water molecules between them (6). The variables describing this solvent rear-
rangement are virtually orthogonal tor. Figure 8b is thus close to a reasonable
caricature in this case. Indeed, given the complexity of a high-dimensional sys-
tem, the coincidence of order parameter and reaction coordinate would seem un-
likely. Something like Figure 8b would seem to be more like the rule than the
exception.

Committor distributions provide a statistical diagnostic for the correctness of a
presumed reaction coordinate,q. Specifically, one may compute the committor
pA(x, ts) for configurations in the ensemble withq(x) = q∗. This ensemble
is sampled at the stage whereq ≈ q∗ in the stepwise calculation ofW(q)
(see Equation 11). The distributions of these computed committors isP(pA) =
〈δ[ pA(x, ts) − pA]〉q∗ , where〈. . .〉q∗ denotes the average over the ensemble with
q(x) = q∗. To the extent thatq is indeed a good reaction coordinate,P( pA) will be
sharply peaked atpA ≈ 1/2. Different behaviors suggest different involvements
of other coordinates. Various behaviors are illustrated in Figure 9.

The idea of considering the committor distribution was introduced in Reference
(6), where the kinetics of ion pair dissociation was studied. For that situation, using
the interionic separation,r, as the presumed reaction coordinate,P( pA) was found
to be bimodal, with peaks at 0 and 1. This sort of behavior is illustrated in panel (b)
of Figure 9. It indicates that a barrier must be crossed moving in a direction other
than that ofr. Truhlar & Garrett have noted that the bimodal character ofP( pA) can
be captured analytically with a two-dimensional parabolic barrier model, where the
presumed reaction coordinate is essentially orthogonal to the actual saddle point
surface (49). It remains unknown how to apply the simple model to ion dis-
sociation (where the orthogonal variable is a collective coordinate describing
density fluctuations near the ions) or to any other kinetic process in a complex
system.

The utility of computing committor distributions is not specific to transition
path sampling. This diagnostic alone indicates whether a postulated reaction coor-
dinate indeed drives a transition or is instead simply correlated with its progress.
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Figure 9 Four different potential or free-energy landscapesV(q, s). Alongside each are
plotted the corresponding free energy,F(q∗, s), and committor distribution,P( pA), for the
ensemble of microstates withq = q∗. For landscape (a), the reaction coordinate is adequately
described byq, andP( pA) is peaked atpA = 1/2. For landscape (b), the reaction coordinate
has a significant component alongs, as indicated by the barrier inF(q∗, s) and the bimodal
shape ofP( pA). In (c), s is again an important dynamical variable. In this caseP( pA) is nearly
constant, suggesting that motion alongs is diffusive whenq is nearq∗. Finally, for landscape
(d), the reaction coordinate is orthogonal toq, reflected by the single peak ofP( pA) near
pA = 0. In this case, almost none of the configurations belonging to the constrained ensemble
with q = q∗ lie on the transition state surface.

Averaging variables over many examples of a transition does not provide equivalent
information. Day et al., for example, have demonstrated that certain hydrogen bond
angles change on average during transfer of an excess proton in liquid water (41).
But in order to establish that the proton transfer mechanism can be described using
only these coordinates, it will be necessary to compute the appropriate distribution
of committors. Similarly, determining only the mean of a committor distribution
does not provide information about the possible importance of orthogonal coordi-
nates. In remarkable experimental studies of colloidal crystallization, Gasser et al.
have, in effect, determined〈pA〉R for various crystallite sizesR (50). The mono-
tonic decrease of〈pA〉R with increasingR, passing through〈pA〉Rc ' 1/2 for a
critical sizeRc, indicates that cluster size is indeed correlated with the progress
of nucleation. But it does not guarantee that the ensemble of configurations with
R= Rc coincides with the transition state surface for nucleation.
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APPLICATIONS

The previous sections have outlined the essential concepts of transition path sam-
pling. What remains to be discussed are technical issues that a practitioner will
encounter when actually attempting a transition path sampling calculation. Sev-
eral of these issues are mentioned below in the context of different applications
of transition path sampling. The reader can find detailed discussions in the pa-
pers presenting these applications. In addition, computer programs with simple
illustrative examples are found at http://gold.cchem.berkeley.edu/TPScode.html.

Heptamer of Cold Lennard-Jones Disks

This model system was first investigated in Reference (2) with transition path
sampling of stochastic trajectories. The lowest-energy state of the cluster has one
disk at the center with the remaining six packed in a circle around it. There are,
of course, many such states, each one a particle label permutation of the first.
Transitions from one such ground state to another involve transitions between
intermediate states. Minimization (or quenching) of the path action was used to
discover the intermediate states and the possible chronologies with which they
are visited. Rate constants were computed from transition path sampling of the
trajectories connecting adjacent intermediate states.

An earlier paper (1) set down many of the principles of transition path sam-
pling, but with move sets and rules that are more complicated and less efficient
than those introduced in Reference (2). It is here that shooting moves like those
illustrated in Figure 3 were introduced. In a shooting move, a new path is cre-
ated from an old one by slightly changing the momenta at a randomly selected
time slice. Then, the equations of motion are integrated forward and backward
in time starting from this modified phase space point. If the new trajectory is reac-
tive, i.e., it starts inA and ends inB, it can be accepted. Otherwise, it is rejected.
The average acceptance probability can be adjusted by varying the magnitude of
random momentum displacements. These shooting moves together with shifting
moves, in which the path is simply translated in time (2), prove indispensable for
efficient transition path sampling. A second study of the Lennard-Jones heptamer
introduced the use of transition path sampling for deterministic trajectories (3). We
recommend Reference (3) as the simplest place to start learning about transition
path sampling.

Isomerization of a Solvated Model Dimer

Equations 7 and 8 relate the time correlation function〈hA(0)hB(t)〉 to a free energy
difference between path ensembles and provide the theoretical basis for the calcu-
lation of transition rate constants. An efficient way to exploit this relationship was
developed in Reference (4). In this approach the reversible work required to con-
fine the endpoint of the transition pathways into regionB at timet is decomposed
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into two terms. The first term is the free energy of confinement for a particular
time t ′, and the second term is the free energy required to change the length of the
path fromt ′ to t. Whereas calculation of the first term requires a computationally
expensive thermodynamic integration, the second term can be readily evaluated in
a single transition path sampling calculation.

This method was demonstrated by calculating isomerization rate constants for
a diatomic molecule immersed in a solvent of soft spheres. Because isomers of the
diatomic differ in bond length, interconversion is mediated by the solvent. For a
sufficiently high internal energy barrier, isomerization events are rare.

In these simulations, shooting and shifting moves were supplemented with
path reversal moves in which new initial conditions are obtained by exchanging
the final and the initial point of the path and inverting the momenta. Because
no new integration of the equations of motion is necessary for path reversals,
the computational cost for this path move is negligible. Path reversal moves can
facilitate ergodic sampling if qualitatively different transition pathways exist.

The efficiency of transition path sampling depends on the degree of correlation
between successive steps in the random walk through trajectory space. On one
hand, these correlations hinder rapid sampling because subsequent pathways bear
certain similarities. On the other hand, it is exactly this similarity that guaran-
tees a nonvanishing acceptance probability for trial steps. As in any Monte Carlo
procedure, these two aspects should be balanced. A systematic study of sam-
pling efficiency for the solvated diatomic indicated that optimum sampling is ob-
tained for acceptance probabilities ranging from 30% to 60%. This range of values
should be used as a rule of thumb when an efficiency analysis is computationally
impractical.

Water Clusters

A cluster consisting of three water molecules and an excess proton may be viewed
as the simplest aqueous system in which activated proton transfer occurs. This
transfer results in a permutation of atomic labels in the cluster’s stable state—a
distinct hydronium ion solvated by two neutral water molecules. Transition path
sampling was used in References (5, 11, 51) to determine rate constants and tran-
sition states for proton transfer in several empirical models of (H2O)3H+. Har-
vesting transition paths for an ab initio model of the cluster, accomplished with
Car-Parrinello molecular dynamics (CPMD) (52, 53), required selective storage of
trajectory data. The temporal locations of future Monte Carlo moves were chosen
(at random) before computing trial pathways. In this way, the massive amount
of data detailing the electronic wave function was stored only at a few, predeter-
mined times as each trajectory was integrated. This scheme is useful in general for
applications in which data storage is burdensome.

Two structurally distinct classes of transition states control proton transfer in
this system. Although a large energetic barrier lies between them on the separatrix,
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the temporally nonlocal nature of shooting moves allows for both transition state
regions to be visited in a single walk through trajectory space. The kinetics
computed by path sampling thus correctly deviate from predictions of Rice, Rams-
perger, Kassel, and Marcus (RRKM) theory (54–57), when assuming a single
harmonic transition state region.

Sampling proton transfer pathways with vanishing total linear momentum,P,
and angular momentum,L , requires that trial moves be performed carefully. Proper
construction of shooting moves consistent with the microcanonical ensemble and
with constraints on linear functions of particle momenta (such asP and L ) is
discussed in the Appendix of Reference (5). This construction has also been used
in other applications to properly incorporate constraints on interparticle distances
(6). Improper treatment of such constraints incorrectly biases the walk through
trajectory space, and we have found it to generate qualitatively erroneous results
in the case of ion pair dissociation in liquid water.

At low temperatures, neutral clusters of a few water molecules exist in a man-
ifold of solid-like stable states which interconvert infrequently. At higher tem-
peratures, these crystalline structures are replaced by amorphous liquid-like ones.
Transition path sampling was used in Reference (58) to collect pathways for both
low-temperature isomerizations and the melting transition in the water octamer,
(H2O)8. Because the liquid state is stabilized by entropy, transition states for
the melting transition do not correspond to saddle points on the potential energy
surface. While conventional methods for exploring potential energy surfaces can
locate only the stationary points of the energy landscape, the statistically defined
separatrix allows identification of energetic as well as entropic bottlenecks.

Diffusion of Isobutane in Silicalite

In silicalite, a zeolite of great importance in petrochemical applications, branched
alkanes are preferentially adsorbed at channel intersections. Through hops
from one intersection to the next these adsorbates can diffuse through the
three-dimensional channel network. By analyzing transition states for diffusion,
Vlugt et al. showed that the hopping mechanism involves both translation and
rotation of the isobutane molecule (10).

Slightly modified shooting moves were used to improve sampling efficiency in
this study. In these shooting moves, a random displacement was applied not only
to the momenta but also to the position of the butane molecule. Both the momen-
tum and the position displacements were chosen from a uniform distribution in
a certain interval. In fact, a variety of configurational trial moves can be used in
conjunction with shooting moves. For instance, the orientation of long-branched
molecules could be modified efficiently with configurational Monte Carlo methods
or rotations around a randomly selected axis (10). It is necessary to employ accep-
tance probabilities for such moves that correctly guide the random walk through
trajectory space without imposing artificial biases.
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Parallel Tempering

In some systems, transitions between stable states occur through many qualita-
tively different mechanisms. As a result, the corresponding pathways may reside
in disconnected parts of trajectory space. The two distinct mechanisms for proton
transfer in (H2O)3H+ described above in the section “Water Clusters” exemplify
this diversity. In such systems, ergodic sampling of trajectory space may be dif-
ficult to achieve. This situation is analogous to sampling problems encountered
in Monte Carlo simulations of glassy systems, in which ergodic sampling is hin-
dered by high free-energy barriers separating adjacent metastable states. Various
methodologies developed to overcome these problems, including J-walking (59),
multicanonical sampling (60), and parallel tempering (61), can, in principle, also
be utilized in transition path sampling. Vlugt & Smit have demonstrated that par-
allel tempering is particularly simple to combine with transition path sampling,
dramatically increasing the rate at which trajectory space is explored (62).

The basic idea of parallel tempering is to perform several transition path sam-
pling simulations simultaneously at different temperatures. At each temperature
level, individual trial moves, such as shooting and shifting, are performed. In addi-
tion to these moves, exchange of pathways between adjacent temperature levels is
periodically attempted. While low-temperature pathways cannot easily cross bar-
riers in trajectory space, high-temperature pathways can. Through path exchange
between different temperature levels, ergodic sampling is achieved simultaneously
at all temperature levels.

Biomolecule Isomerization

The folding of a protein molecule from a denatured state to its native conforma-
tion is a rare event of central biological importance. Although the denatured and
native states of several model proteins have been reasonably well characterized,
the dynamical variables that drive folding remain elusive (42, 43, 63, 64). The re-
sults of importance sampling for alanine dipeptide isomerization (9) (among the
simplest of biomolecular rearrangements) suggest that these variables are indeed
complex, involving collective intramolecular fluctuations as well as solvent de-
grees of freedom. Analysis of transition states revealed that, even in the absence
of solvent, a coincidence of dihedral and torsional motions is required to cross the
separatrix. With solvent molecules explicitly included, a nearly uniform committor
distribution (as in Figure 9c) indicated that intramolecular variables are insuffi-
cient to describe the isomerization mechanism. The solvent variables needed to
distinguish between the isomers’ basins of attraction involve more than simply
numbers of hydrogen bonds and density of coordinating molecules.

A significant difficulty arises in harvesting folding pathways for molecules
larger than the alanine dipeptide. Owing to the low frequency of backbone mo-
tions and buffeting by solvent molecules, relatively long times are required for
trajectories initiated on the separatrix to commit to either the folded or unfolded
state (say, nanoseconds rather than picoseconds). As a result, the appropriate length
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of harvested paths is much greater than the characteristic timescale of chaos, i.e.,
the inverse rate of divergence of a displacement in phase space. The efficiency of
shooting moves is greatly diminished in this case. Even the smallest obtainable
momentum displacements (limited by the finite precision of numerical simula-
tions) lead to large trial steps in trajectory space, few of which are accepted. Only
shooting moves initiated near the separatrix have a reasonable acceptance proba-
bility. The alanine dipeptide is sufficiently small that this problem is not yet severe.
In Reference (9), the magnitude of momentum displacements was adjusted to ob-
tain an average acceptance probability of 30%. But a relatively long commitment
time is apparent from the fact that most isomerization trajectories cross the tran-
sition state surface several times before settling into the basin of attraction of the
final state.

Water Autoionization

Trajectories of simulated liquid water exhibiting dissociation of a water molecule
to form hydronium (H3O+) and hydroxide (OH−) ions have been harvested using
transition path sampling in conjunction with CPMD (13). As Eigen imagined
(65, 66), the product ions of this process are separated on a nanometer scale and
are metastable. From this intermediate state in liquid water, the ions may become
stable by diffusing away from each other via the Grotthuss mechanism (39, 67, 68).
Alternatively, they may recombine on a picosecond timescale by returning through
the transition state surface for dissociation.

Characterizing basins of attraction is a significant aspect of sampling autodisso-
ciation trajectories: An order parameter describing only the separation of charges
does not successfully discriminate between the intermediate dissociated ion state
and neutral water molecules. Indeed, ions artificially separated by 1 nm most often
recombine within 100 fs along a wire of hydrogen bonds. The majority of trajec-
tories leading to charge separation thus constitute fluctuations within the neutral
basin of attraction and do not cross the transition state for dissociation. A success-
fully discriminating order parameter instead describes the existence and length of
hydrogen bond wires connecting the two ions.

Owing to the considerable computational expense of performing ab initio
molecular dynamics, and the extreme rarity of autoionization events, prepar-
ing an initial pathway for sampling was also an important step in this applica-
tion. By artificially separating ions, while simultaneously ensuring the absence of
short hydrogen bond wires, trajectories evincing recombination on a picosecond
timescale were generated. Time reversal of such a trajectory, which passes through
the dynamical bottleneck, produced a suitable starting point for transition path
sampling.

Solvation Dynamics

Importance sampling of trajectories is useful not only for harvesting rare events at
equilibrium but also for studying the dynamics of systems out of equilibrium. In
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Reference (12), the methods of path sampling were extended to efficiently sample
the wings of a nonequilibrium distribution function. Umbrella sampling (20, 21)
has been used to show that the energy gap,1E, between ground and excited states
of a solute in a polar solvent obeys Gaussian statistics at equilibrium, even for values
of 1E that are several standard deviations from the mean. The dynamical linear
response suggested by these statistics (69) has been observed in many, but not all,
simulations of solvent relaxation following instantaneous excitation of the solute.
Because these straightforward simulations rarely encounter values of1E far from
the mean, however, they cannot determine whether deviations from linear response
behavior are accompanied by non-Gaussian statistics as the system relaxes. For
this purpose, it is necessary to bias the sampling of trajectories according to their
solvation dynamics,1E(t). Using this generalization of equilibrium umbrella
sampling, the statistics of1E(t) were shown to remain Gaussian even in states
far from equilibrium (12). But the variance of these statistics changes in time, i.e.,
solute excitation breaks time-translational symmetry of the linear susceptibility.
This nonstationarity is in fact the source of apparently nonlinear response.

The efficient sampling of nonequilibrium trajectories in this application also
required careful construction of appropriate trial moves. Because paths of interest
are very short (10–100 fs), correlations in the random walk through trajectory space
decay quickly only for large-amplitude shooting moves. Such moves, however,
tend to heat the system considerably, so that trial paths are accepted with low
probability. Controlling the distribution of kinetic energies for large-amplitude
shooting moves, as described in the Appendix of Reference (12), is sufficient to
restore a reasonable acceptance probability.

FOR THE FUTURE

The preceding sections describe applications from several branches of chemical
and biological physics. It would seem that any rare event whose underlying dynam-
ics can be simulated for times as long as the commitment time,τmol, is amenable
to transition path sampling. Indeed, we expect to see the general methodology of
importance sampling in trajectory space widely applied. Many applications are
possible without significant changes to the methods we have presented, including
phenomena quite different from those we have studied so far. For example, the tech-
niques outlined in the sections “Transition Path Sampling” and “Reversible Work,”
could be used to sample the dynamical structures of highly chaotic systems out of
equilibrium. Other applications will require improvements and generalizations of
our methods. In this section, we point to three issues that are truly problematic for
the specific methodology we have developed. It is our hope that others’ experience
and fresh perspectives will lead to advances in these areas.

HARVESTING LONG TRAJECTORIES As discussed in the section “Biomolecule Iso-
merization,” very long commitment times pose a serious difficulty for path
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sampling. Shooting, our basic technique for generating trial steps in trajectory
space, is ineffective whenτmol greatly exceeds the timescales characterizing chaos.
For this reason, processes such as protein folding, structural rearrangement of
deeply supercooled liquids, and condensation of a supersaturated vapor are fron-
tier applications. Harvesting pathways in these cases will likely require invention of
a random walk step whose magnitude can be tuned even for very long trajectories.

RECOGNIZING PATTERNS IN STABLE STATES, METASTABLE STATES, AND TRANSITION

STATES We have described a systematic method for generating correctly weighted
examples of transition pathways and transition states, given an order parameter
that discriminates between stable states. We have also shown how distributions of
the committor may be used to test an interpretation of the reaction mechanism.
Characterizing stable states and generating mechanistic interpretations, however,
remain subjective endeavors. When the relevant fluctuations involve only a few
atomic coordinates, or are linear combinations of preconceived variables, they can
usually be discerned through visual inspection or techniques such as principal
component analysis (70). But in complex systems, the pertinent coordinates, such
as electric fields and density fields, are more often nonlinear functions of very
many atomic coordinates. Identifying the few important variables is a significant
challenge in these cases, even when many examples of stable states and transition
states are known. Generalizations of principal component analysis for nonlinear
systems (71, 72) may be helpful in systematically approaching this problem of
pattern recognition.

Recognizing patterns that characterize long-lived intermediate states poses a
similar challenge. In the section “Reversible Work,” we described a criterion for
detecting the presence of metastable regions between reactants and products. But
identifying the segments of harvested pathways that belong to these regions, and
subsequently characterizing each region, is not straightforward. For this purpose
it may be necessary to generalize the concept of a committor, because a significant
fraction of fleeting trajectories initiated near metastable states will reach neither
reactants nor products.

COMPUTING QUANTUM DYNAMICS The nuclear dynamics we have considered in
this review, and moreover the very notion of distinct trajectories in phase space,
are entirely classical. Quantum mechanical phenomena arise from fluctuations
about, and interference between, such classical trajectories. These effects are in
many cases captured accurately within the semiclassical initial value representa-
tion (SC-IVR) (73), which expresses quantum mechanical correlation functions
as superpositions of classical trajectories. It is thus tempting to use the ensem-
ble of trajectories generated by transition path sampling in conjunction with
SC-IVR to compute the dynamical effects of quantization on high-dimensional
systems. The “weight” of a pair of trajectories in SC-IVR, however, is a highly
oscillatory function. Summation over trajectories, therefore, results in significant



5 Apr 2002 12:52 AR AR155-11.tex AR155-11.SGM LaTeX2e(2001/05/10)P1: GSR

316 BOLHUIS ET AL.

cancellation, and numerical convergence is extremely slow. It remains to be seen
whether an importance sampling of trajectories can be appropriately biased
to generate groups of strongly interfering pathways, so as to overcome this
problem.
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Figure 1 Schematic depiction of the potential energy surface of a complex system.
Even though such an energy landscape is dense in saddle points, only a few of them are
relevant for transitions between different basins of attraction. At finite temperature all
details of the surface smaller thankBT are of minor importance. Because the transition
path sampling method does not rely on identifying saddle points in the potential energy
surface, it is the tool of choice to study transitions in complex systems.


