1 TPS for a diatomic molecule in a WCA-fluid

1.1 Model

Consider N two-dimensional particles of mass m interacting via the purely repulsive Weeks-Chandler-Andersen potential,

$$V_{\text{WCA}}(r) = \begin{cases} 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right] + \epsilon & \text{if } r \leq r_{\text{WCA}} \equiv 2^{1/6} \sigma, \\ 0 & \text{if } r > r_{\text{WCA}}, \end{cases}$$
 (1)

where r is the interparticle distance and ϵ and σ are parameters specifying the strength and the interaction radius of the potential, respectively. In addition, two of the N particles interact via the double well potential

$$V_{\rm dw}(r) = h \left[1 - \frac{(r - r_{\rm WCA} - w)^2}{w^2} \right]^2.$$
 (2)

Here, r is the distance of the two particles belonging to the diatomic molecule. The parameter h controls the height of the barrier between the stable states located at $r = r_{\text{WCA}}$ (the compact state) and $r = r_{\text{WCA}} + 2w$ (the extended state), respectively. The system evolves according to Hamilton's equations of motion in a simulation box with periodic boundary conditions.

Fig 1: Potential energy functions: WCA (broken line), WCA+bistable potential (solid line).

It is practical to use reduces units, where lengths are measured in units of σ , energies in units of ϵ , masses in units of m, times in units of $\tau \equiv (m\sigma^2/\epsilon)^{1/2}$, and transition rate constants in units of τ^{-1} .

Since the system evolves at constant total energy E with a fixed center of mass, the appropriate distribution function of initial conditions x_0 is the microcanonical distribution with the additional constraint of a vanishing total momentum P,

$$\rho(x_0) = \delta \left(\mathcal{H}(x_0) - E \right) \delta \left(P \right). \tag{3}$$

Accordingly, the momentum displacement δp used in the shooting algorithms must be chosen to conserve both the total energy \mathcal{H} and the total momentum P of the system.

For shooting moves all the components of the momentum displacement vector δp are chosen from a Gaussian distribution with a certain width. Next, components of δp corresponding to a non-vanishing total momentum are removed. Then, δp is added to the old momentum $p_t^{\rm o}$ yielding the new momentum $p_t^{\rm n} = p_t^{\rm o} + \delta p$ which is rescaled to conserve the total energy E.

The interatomic distance r provides the natural order parameter for the definition of the stable regions A and B: we define regions A and B to contain all configurations with $r < R_A$ and $r > R_B$, respectively. Obviously, R_A and R_B should lie on different sides of the separating barrier and allow the stable regions to accommodate most of the equilibrium fluctuations around the potential energy minima. Typical values are $R_A = 1.30\sigma$, $R_B = 1.45\sigma$, a barrier width of $w = 0.25\sigma$, and a barrier height of $h = 6\epsilon$. Consequently, the top of the barrier is at $r \sim 1.37\sigma$, and the minima of the bistable potential are at $r \sim 1.12\sigma$ and $r \sim 1.62\sigma$. To increase the speed of the simulation small particle numbers should be chosen, e. g. N = 9.

An MD-code and a path sampling code are provided on the workstations. In these programs the equations of motion are integrated with the velocity-Verlet algorithm.

1.2 Things to do

- 1. Follow a an MD-trajectory for a certain time and watch how the intramolecular distance evolves, i.e. plot r as a function of time. Do it for different densities.
- 2. Calculate the time correlation function C(t) for a low barrier with straightforward MD.
- 3. Calculate the transmission coefficient for different particle densities.
- 4. Take the path sampling code and find out if subsequent pathways are very different. You could, for example, compare the evolution of the intramolecular distance along the pathways.
- 5. Find the optimum δp .
- 6. Calculate the path average $\langle h_B(t) \rangle_{AB}$ with the transition path sampling program.
- 7. Where is the plateau?
- 8. Calculate C(t) by umbrella sampling.
- 9. Calculate a transition rate constant.
- 10. Determine the transition state ensemble