
Rare Event Simulations 

Transition state theory 16.1-16.2
Bennett-Chandler Approach 16.2

Transition path sampling16.4



Outline
• Part 1

– Rare event and reaction kinetics
– Linear Response theory
– Transition state theory 
– Free energy methods
– Bennet Chandler approach
– Example zeolites

• Part 2
– Two ended methods
– Transition path sampling
– Rate constants
– Reaction coordinate analysis
– Application to crystallization
– Path metadynamics



catalysis

folding & binding

crystallisation

complex fluids

solution reactions

enzyme reactions

solvent effects

isomerization

Rare
Events



Rare events
Interesting transitions in complex systems 

– solution chemistry
– protein folding 
– enzymatic reactions
– complex surface reactions
– diffusion in porous media
– nucleation

These reactions happen on a long time 
scale compared to the molecular timescale 

dominated by collective, rare events
Straightforward MD very inefficient 
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Example: Diffusion in porous material



Phenomenological reaction kinetics

A B«
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Equilibrium: cA t( ) = cB t( ) = 0
cA
cB

=
kB→A
kA→B

A B
A rare event can be seen as a chemical reaction 
between reactant A and product B

The change in population c(t) is (0<c<1)

This gives a relation between equilibrium 
population and reaction rates
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Let us make a perturbation of the equilibrium populations, e.g by 
applying an external field.
When releasing the field, the system will relax to the original equilibrium 

For state A For state B:

We can rewrite the kinetics in terms of the perturbation Δc:

With relaxation time

Relaxation time

cA t( )+ cB t( ) =1



Microscopic theory
Microscopic description of the progress of a reaction

q
Reaction coordinate: in this case the z-coordinate of the particle

We need to write the kinetics of the reaction in terms of this 
microscopic reaction coordinate q



Reaction coordinate

*q q<Reactant A:

Product B: *q q>

( ) ( ) ( )* 1 * *Ag q q q q q qq q- = - - = -

cA t( ) = gA t( )

A B

Let us introduce the function gA:

Heaviside θ-function
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q q

q q
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q
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With this function we write for the probability cA(t) the system is in state A:

Transition state: q = q*



Microscopic theory
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Is going to give us the 
macroscopic relaxation in terms of a 
microscopic time correlation function

This needs linear response theory



Let us consider the effect of a 
static perturbation:

For the equilibrium concentration as a function of ε:

( )0 *AH H g q qe= - -

This external potential increases the 
concentration of A

0A A Ac c c
e

D = - = gA ε
− gA 0

We need to compute the ensemble average in the form of :
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Perturbed Hamiltonian



H = H0 − εD

0
A A AD = -
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A =
dΓ∫ Aexp −β H0 − εD( )⎡⎣ ⎤⎦
dΓ∫ exp −β H0 − εD( )⎡⎣ ⎤⎦

The original Hamiltonian (H0) is perturbed by εD: 

This gives as change in the expectation value of A:

with

Linear Response theory (static)

If the perturbation is small we can write A = A
0
+
∂ A

0

∂ε
ε



For such a small perturbation ΔA =
∂ A
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Evaluated for ε= 0

Giving:



If we apply this result for cA:
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Let us now switch off the perturbation at t=0

Giving:

Let us see how the system relaxes to equilibrium (dynamical perturbation)

H = H0 − εD at t>0:   H = H0

ΔA t( ) = A t( ) − A
0
= A t( )

We take <A>0=0

Similar as for the static case for small values of ε, we have

  
ΔA t( ) = βε D 0( )A t( )

∂A t( )
∂ε

0

=
dΓ∫ βA t( )Dexp −βH0

⎡⎣ ⎤⎦

dΓ∫ exp −βH0⎡⎣ ⎤⎦{ }
= β D 0( )A t( )

Linear Response theory (dynamic)



If we apply this result to

Compare linear response expression with the macroscopic expression

We obtain:

D = ΔgA    and   A= ΔgA

From static perturbation:

  
ΔA t( ) = βε D 0( )A t( )

ΔcA t( ) = βε ΔgA 0( )ΔgA t( )
βε =

ΔcA 0( )
cA cB

ΔcA t( ) = ΔcA 0( )
ΔgA 0( )ΔgA t( )
cA cB

ΔcA t( ) = ΔcA 0( )exp − t τ⎡⎣ ⎤⎦
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τ
exp − t τ⎡⎣ ⎤⎦ =

gA 0( ) gA t( )
cA cB

Derivative

= −
gA 0( )gA t( )
cA cB

d
dt
A t( )B t +τ( ) = 0

   
A t( ) B t +τ( ) + A t( )B t +τ( ) = 0

   
A 0( ) B τ( ) = − A 0( )B τ( )

Stationary (t is arbitrary, only depends on τ) 

Δ has disappeared because of the 
derivative

Microscopic rate expression



kA→B t( ) =
q 0( ) ∂gB q 0( )− q*( )

∂q
gB t( )

cA

For sufficiently short t, we obtain

1
τ
exp −t τ"# $%=

gA 0( )gA t( )
cA cB

We have

kA→B t( ) =
gA 0( )gA t( )

cA

gA q − q*( ) = q ∂gA q − q*( )
∂q

= − q
∂gB q − q*( )

∂q

Using

Using the definition of gA we can write

We now have an expression that 
relates the macroscopic reaction 
rate to microscopic properties

τ = kA→B
−1 1+ cA cB( )

−1
=
cB
kA→B



kA→B t( ) =
q 0( ) ∂gB q 0( )− q*( )

∂q
gB t( )

cA

Let us look at the 
different terms in this 
equation

  
gB t( ) = θ q t)( )− q*( ) Only when the system is in the 

product state we get a contribution 
to the ensemble average

  

∂gB q 0( )− q *( )
∂q

=
∂Θ q 0( )− q *( )

∂q

= δ q 0( )− q *( )

Only when the system starts at 
the transition state, we get a 
contribution to the ensemble 
average

q 0( ) Velocity at t=0

  
cA = Θ q* − q( ) Concentration of A

   
kA→B t( ) =

q 0( )δ q 0( )− q *( )θ q t( )− q *( )
θ q *−q( )



   
kA→B t( ) =

q 0( )δ q 0( )− q *( )θ q t( )− q *( )
θ q *−q( )

Let us consider the limit: t → 0+

lim
t→0+

=θ q t( )− q*( ) =θ q t( )( )

kA→B
TST =

q 0( )δ q 0( )− q*( )θ q( )
θ q*−q( )

Eyring’s transition state theory

This gives:

Transition state theory

Contribution for 
positive velocities



kA→B t( ) =
q 0( )δ q 0( )− q*( )θ q t( )− q*( )

θ q*−q( )

kA→B t( ) =
q 0( )δ q 0( )− q*( )θ q t( )− q*( )

δ q 0( )− q*( ) ×
δ q 0( )− q*( )
θ q*−q( )

We can rewrite this expression as a product by inserting 1

Ratio of probabilities to find 
particle on top of the barrier 
and in the state A

Conditional “probability” to find 
a particle on the top of the 
barrier with a positive velocity

Transition state theory

kA→B t( ) = q 0( )θ q t( )− q*( )
q=q*

×
δ q 0( )− q*( )
θ q*−q( )



  

δ q 0( )− q *( )
θ q *−q( )

Ratio of the probabilities to find a 
particle on top of the barrier and in 
the state A

δ q*−q( ) =C dqδ q − q*( )exp −βF q( )( )∫ =C exp −βF q*( )( )

  
Θ q *−q( ) = C dqΘ q − q *( )exp −βF q( )( )∫ = C dqexp −βF q( )( )

q<q*
∫

Probability to be on top of the barrier:

Probability to be in state A:

We need to determine the free energy as a function of the order parameter

This gives:
δ q 0( )− q*( )
θ q*−q( ) =

exp −βF q*( )( )
dqexp −βF q( )( )

q<q*
∫

Free energy barrier



Conditional “probability” to find a particle on the 
top of the barrier with a positive velocity

   
q 0( ) Assume that on top of the barrier the particle is in equilibrium: 

use Maxwell-Boltzmann distribution to generate this velocity

q 0( )θ q t( )− q*( ) Only particles with a positive velocity end up in the 
product state. We assume that once in the product 
state they stay there. 

lim
t→0+
q 0( )θ q t( )− q*( ) = q 0( )θ q 0( )( ) = 0.5 q 0( )

q 0( )θ q t( )− q*( )
q=q*

kTSTA→B = 0.5 q 0( )
exp −βF q*( )( )
dqexp −βF q( )( )

q<q*
∫ Eyring’s TST 

kTSTA→B = limt→0+
q 0( )θ q t( )− q*( )

q=q*
×
δ q 0( )− q*( )
θ q*−q( )



1-D ideal gas particle on a hill

Maxwell-Boltzmann:

kTSTA→B = 0.5 q 0( )
exp −βF q*( )( )
dqexp −βF q( )( )

q<q*
∫

kTSTA→B =
kBT
2πm

exp −βU q*( )( )
dqexp −βU q( )( )

q<q*
∫

   
q 0( ) = 2kBT

πm

This gives for the hopping rate



Ideal gas particle on a not-so-ideal hill

q1 is the estimated transition state

q* is the true transition state



For this case transition state theory will overestimate the hopping rate
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Transition state theory

   
kA→B t( ) =

q 0( )δ q 0( )− q *( )θ q t( )− q *( )
θ q *−q( )

• One has to know the free energy accurately (MC/MD)
• Gives only an upper bound to the reaction rate
• Assumptions underlying transition theory should hold: no recrossings

lower value 
because of 
recrossings
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Free energy barriers in complex systems
• Straightforward MD or MC and then use

is highly inefficient for high barriers

• Many �tricks� have been proposed to overcome and sample barriers

– Temperature enhanced sampling: simulated tempering, parallel 
tempering, Temperature accelerated molecular dynamics …)

– Constraint dynamics: thermodynamic integration,  blue moon 
sampling....

– Flat histogram sampling: umbrella sampling,  hyperdynamics,....
– history dependent search: Wang-Landau, adaptive biasing force, 

metadynamics,…

– non-equilibrium methods: steered MD, targeted MD,.... 

– trajectory-based methods:  nudged elastic band, action minimization, 
string method, transition path sampling, forward flux sampling,....

βF (q) = −ln δ q(r)− q( )



Free energy barriers 
• Replica exchange

• Thermodynamic  integration 

• Umbrella sampling 

• Metadynamics



Replica exchange/parallel tempering

F

Q

room temperature

F

high temperature
Q



Two replicas

2

1
T = 290K

T = 360K

Total Boltzmann weight

e��1U1(r
N )

e��2U2(r
N )

e��1U1(r
N )e��2U2(r

N )



Switching temperatures

2

1
T = 360K

T = 290K

Total Boltzmann weight

e��1U2(r
N )

e��2U1(r
N )

e��1U2(r
N )e��2U1(r

N )



The ratio of the new Boltzmann factor over the old one is:

the rule for switching temperatures should obey detailed balance 
Metropolis Monte Carlo scheme

N (n)
N (o)

= e(�2��1)[U2(r
N )�U2(r

N )]

acc(1� 2) = min
�
1, e(�2��1)[U2(r

N )�U1(r
N )]

⇥



Set of replicas

R

2

1
T = 290K

T = 293K

T = 360K

e��1U1(r
N )

e��2U2(r
N )



Overlap in potential energy



Replica Exchange MD (REMD)

N

2

1
Hansmann Chem Phys Lett 1997

Sugita & Okamoto Chem Phys Lett 1999

e��1U1(r
N )

e��2U2(r
N )



Replica Exchange

Advantage: no order parameters needed
Disadvantage: convergence of free energy landscape can be still
slow, especially around phase transition: many replicas needed.

Free energy follows fromExchange as a function of time.



Free energy barriers 
• Replica exchange

• Thermodynamic  integration 

• Umbrella sampling 

• Metadynamics



Thermodynamic integration
• The free energy follows from the derivative

• The derivative of the free energy is known as the mean force

• compute the force f at λ directly or by adding a constraint to the Lagrangian

• the constraint force follows from the Lagrange multiplier

constraint force



REACTION COORDINATE  Q

Q = R     - ROH HC

SYSTEM

32 H2O  + H+ + C2H4

T=300K

T. Van Erp, E-J Meijer ,
Angew. Chem, 43, 1660 (2004). 

Example: Alkene hydration

C2H4 + H2O  CH3CH20H



Example: Alkene hydration
CONSTRAINT FORCE FREE ENERGY PROFILE

CPMD-BLYP 23

Exp: Gas Phase 50-100 

MP2: Gas Phase 58

Exp:  Low Density Acid Solution 33

BLYP: Gas Phase + Acid 24

kcal/mol



Free energy barriers 
• Replica exchange

• Thermodynamic  integration 

• Umbrella sampling 

• Metadynamics



Umbrella sampling

The regular distribution of an order parameter q is

Applying a bias potential Vbs (q) gives for the biased distribution

The free energy can be extracted from Pbs(q) by

Pbs(q) =

R
dx exp [��U(x)� �Vbs(q(x)]�(q � q(x))]R

dx exp [��U(x)� �Vbs(q(x)])

P (q) = h[�(q � q(x))]i =
R
dx exp [��U(x)]�(q � q(x))]R

dx exp [��U(x)])

�F (q) = lnPbs(q)� �Vbs(q) + const-



Flat sampling
• Consider a free energy landscape  

with two minima

• taking a biasing potential   

• results in a flat histogram 

• This turns out to effectively sample 
the entire free energy barrier

Vbs(q) = �F (q)

F(q)

Vbs(q)

Pbs(q)



Biasing potential can take any functional form to force system into unlikely region

Umbrella sampling

F(λ)

λ

quadratic bias

λ

F(λ)

hard window bias



Histograms
Suppose we perform a hard window simulation



Weighted Histogram Analysis Method 
Joins multiple overlapping histograms using an 
maximum likelihood criterion 
For Nsims histograms ni(x) the best estimate for the 
joint histogram is  

where Ni is the total number of measurements in the 
histogram and Zi is a �partition function� determined 
by

the two equations have to be solved iteratively 

Ferrenberg & Swendsen 1986, Kumar et al 1992

Equivalent to MBAR (see Frenkel�s lecture)



Free energy barriers 
• Replica exchange

• Thermodynamic  integration 

• Umbrella sampling 

• Metadynamics



Metadynamics
• method to obtain  free energy in a single simulation
• similar idea as Wang Landau sampling: add history dependent biasing 

potential to forcefield 

• s  = predefined order parameters
• w = height of hills
• σ = width of gaussians

• w is reduced every cycle

s

F(s)

F (s) = � lim
t�⇥

V (s; t)

Barducci,  Bussi,  Parrinello,  PRL, (2008).

Laio and Parrinello, PNAS (2002)

• more controlled version: well tempered MetaD



Link to bernds animation

file://localhost/Users/bolhuis/Documents/Presentations/Molsim2014/berndsanimation.key


SN2 reaction between Cl- and CH3Cl

S(R) = rC-Cl – rC-Cl`

Reactant                Transition                  Product
Complex                  State                       Complex

Bernd Ensing, Alessandro Laio, Michele Parrinello and 
Michael L. Klein, J. Phys. Chem. B 109 (2005), 6676-
6687

Meta-dynamics can relax the requirement
of choosing a good reaction coordinate

S1(R) = rC-Cl
S2(R) = rC-Cl`
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Problem with TST
There are recrossings that cause overestimation of the rate constant

trajectories that seem to overcome the barrier but in fact bounce back



Bennett-Chandler approach

kA→B t( ) =
q 0( )δ q 0( )− q*( )θ q t( )− q*( )

θ q*−q( )

kA→B t( ) =
q 0( )δ q 0( )− q*( )θ q t( )− q*( )

δ q 0( )− q*( ) ×
δ q 0( )− q*( )
θ q*−q( )

Computational scheme:

1. Determine the probability from the free energy using 
MC or MD, e.g. by umbrella sampling, thermodynamic 
integration or other free energy methods

2. Compute the conditional average from a MD simulation



kA→B
TST t( ) =

q 0( )δ q 0( )− q1( )θ q( )
δ q 0( )− q1( ) ×

δ q 0( )− q1( )
θ q1 − q( )

MD simulation to correct the 
transition state result!

kA→B t( ) =
q 0( )δ q 0( )− q1( )θ q t( )− q1( )

δ q 0( )− q1( ) ×
δ q 0( )− q1( )
θ q1 − q( )

Transmission coefficient

κ t( ) ≡
kA→B t( )
kA→B
TST

=
q 0( )δ q 0( )− q1( )θ q t( )− q1( )

0.5 q 0( )
MD simulation:
1. At t=0 q=q1
2. Determine fraction at product state weighted with initial velocity

Bennett-Chandler approach



Example diffusion in zeolite
• Zeolites important class of 

materials

• Diffusion of alkanes in matrix is 
poorly described

• Approach
– molecular simulation of 

alkanes in fixed zeolite frame
– Unified atom FF by Dubbeldam 

et al.

D. Dubbeldam, et al., J. Phys. Chem. B, 108, 12301, 2004



q 0( )δ q 0( )− q*( )θ q t( )− q*( )

Low value of κ

t→∞: θ=1
For both 
q 0( )  and − q 0( )



cage      window     cage

βF
(q

)

q

q*

cage      window     cage

βF
(q

)

q

q*

Reaction coordinate
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Barriers on smooth and rough energy landscapes

• # saddle points limited
• determined by potential energy
• use eigenvectors or Hessian to find 

them  

• # saddle points uncountable
• entropy important, many pathways
• determined by free energy
• exploring requires sampling schemes

Dellago logoTM

• Clearly, barrier is most important for rare event
• But how to obtain this barrier?
• In multidimensional energy landscapes barrier is saddle point



Breakdown of BC approach

If the reaction coordinate is not known, the 
wrong order parameter can lead to wrong 
transition states, mechanism and rates

∫ "−"−= )},(exp{ln)( qqEqdkTqW β

kappa can become immeasurable low if the reaction coordinate is 
at the wrong value the reaction coordinate is wrongly chosen



Two ended methods

Methods that take the entire path 
and fix the begin and end point

Many methods proposed:
Action minimization
Nudged elastic band 
String method 
Path metadynamics
Milestoning 
Transition path sampling
....



Transition path sampling

• Sampling by Monte Carlo
• Requires definition of stable states  A,B only
• Results in ensemble of pathways
• Reaction coordinate is a result of simulation not an input
• Allows for calculation of rate constants

Apply when process of interest 
– is a rare event 
– is complex and reaction coordinate is not known

Examples: nucleation, reactions in solution, protein folding

C. Dellago, P.G. Bolhuis, P.L. Geissler

Adv. Chem. Phys. 123, 1 2002

Samples the path ensemble: 
all trajectories that lead over barrier



Path probability density

Path = Sequence of states 

xiDt



Transition path ensemble

hA=1 hB=1



1. Generate new path from old one

2. Accept new path according to detailed balance:

3. Satisfy detailed balance with the Metropolis rule:

Metropolis MC of pathways 



•

Shooting moves
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Shooting algorithm 



Standard TPS algorithm

• take existing path
• choose random time slice t
• change momenta slightly at t
• integrate forward and backward in time to create new path of length L
• accept if A and B are connected, otherwise reject and retain old path
• calculate averages
• repeat



Definition of the stable states



Classical nucleation (1926)

GΔ

0

RR*
Liquid

R

Crystal nucleus

surface bulk

€ 

ΔG = 4πR2γ − 4
3
πR3ρΔµls

g :  surface tension
Dµ : chem. pot difference
r: density

–How does the crystal form?
–What is the structure of the critical nucleus
–Is classical nucleation theory correct?

•What is the barrier?
•Rate constant



Path sampling of nucleation
TIS in NPH ensemble, as density and temperature change 
N=10000, P=5.68 H=1.41 (25 % undercooling)

D. Moroni, P. R. ten Wolde, and P. G. Bolhuis, Phys. Rev. Lett. 94, 235703 (2005) 



Sampling paths is only the beginning

• Eugene Wigner: "It is nice to know that the computer understands 
the problem. But I would like to understand it too.�

• Path ensemble needs to be further explored to obtain:
– Rate constants
– Free energy
– Transition state ensembles
– Mechanistic picture
– Reaction coordinate

• Illustrative example: crystal nucleation



Transition interface sampling

T. S. van Erp, D. Moroni and P. G. Bolhuis, J. Chem. Phys. 118 , 7762 (2003)
T. S. van Erp and P. G. Bolhuis, J. Comp. Phys. 205, 157 (2005)

A

B

Overall states in phase space:
directly coming from A

directly coming from B



A
B

= probability that path crossing i for first time after leaving A reaches i+1 before A
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TIS results for 
nucleation

Free energy follows directly 
Moroni, van Erp, Bolhuis, PRE, 2005

Structural analysis?



Committor
(aka p-fold, splitting probability)

A

B
r

Probability that a trajectory initiated at r relaxes into B

L. Onsager, Phys. Rev. 54, 554 (1938). 
M. M. Klosek, B. J. Matkowsky, Z. Schuss, Ber. Bunsenges. Phys. Chem. 95, 331 (1991)
V. Pande, A. Y. Grosberg, T. Tanaka, E. I. Shaknovich, J. Chem. Phys. 108, 334 (1998) 



Transition state ensemble
r is a transition state (TS) if pB(r) = pA(r) =0.5

A

B
1.0

0.5

0.0

A

B
TSE:
Intersections of transition 
pathways with the 
pB=1/2 surface



Committor distributions



Committor distribution

N=243

Clearly, n is not entire story



Structure 
Small and structured

Big and unstructured

Committor analysis gives valuable insight



Outline
• Part 1

– Rare event and reaction kinetics
– Linear Response theory
– Transition state theory 
– Free energy methods
– Bennet Chandler approach
– Example zeolites

• Part 2
– Two ended methods
– Transition path sampling
– Rate constants
– Reaction coordinate analysis
– Application to crystallization
– Path metadynamics



iso-committor surfaces

pB(r)=0.5

0.5 < pB(r) < 10 < pB(r) < 0.5

A
B

TS

Path-metadynamics



pB(r)=0.5

0.5 < pB(r) < 10 < pB(r) < 0.5

A
B

TS

the average transition pathway
(in CV space)

Path finding on high-dimensional free energy landscapes.
Grisell Díaz Leines and Bernd Ensing
Phys. Rev. Lett. 109 (2012), 020601 

Path-metadynamics



B
A

distance to mean density
• start from guess path 
• bias dynamics along path
• move nodes to the mean density
• maintain equidistant nodes

Path finding on high-dimensional free energy landscapes.
Grisell Díaz Leines and Bernd Ensing
Phys. Rev. Lett. 109 (2012), 020601 

Path-metadynamics



Parameters:
T = 300 K
Hgaussian = 10 K
Wgaussian = 0.05
Δtgaussian = 100 MD steps
n = 20 + 20 + 20
τ = 1000 MD steps

every recrossing:
H x 50%
W x 50%
τ x 100

σ
0 0.5 1.0 1.5-0.5

Path-metadynamics of alanine dipeptide



The end


