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Introduction

e Why to use a simulation

e Some examples of questions we
can address



Molecular Simulations

e Molecular dynamics:
solve equations of motion J—g
e Monte Carlo: rl

importance sampling - —

e Calculate thermodynamic . MC
and transport properties e
for a given intermolecular R
potential "
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Pressure
Heat capacity
Heat of adsorption
Structure
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The idea for a given intermolecular potential
“exactly” compute the thermodynamic
and transport properties of the system

Diffusion coefficient
Viscosity
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Intermolecular potential

The intermolecular potential can:

e Mimic the experimental system as
accurate as possible:

e Replace experiments (dangerous,
impossible to measure, expensive, ...)

e Make a model system:

e Test theories that can not directly be
tested with experiment



If we know/guess the “true” intermolecular
potential



Example 1: Mimic the “real world”

Critical properties of long chain

hydrocarbons s




Example 1: Mimic the “real world”

Critical properties of long chain
hydrocarbons o e
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To predict the thermodynamic properties (boiling points)

of the hydrocarbon mixtures it is convenient
(=Engineering models use them) to know the critical
points of the hydrocarbons.
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Critical points of long chain hydrocarbons

Heptadecane
Pentane
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Hydrocarbons: intermolecular potential

United-atom model

e Fixed bond length _ ¢+

/ CH,
e  Bond-bendin " \CH / \CH
2 3

° Torsion

o Non-bonded: Lennard-
Jones

o242

10
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equilibria

Computational issues:

e How to compute
vapour-liquid
equilibrium?

e How to deal
with long chain
hydrocarbons?
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Molecular dynamics: press VapOU r'IiCIUid
enter and see --- - .
equilibria
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Computational issues:

e How to compute
vapour-liquid
equilibrium?

e How to deal
with long chain
hydrocarbons?
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Computational issues:

How to compute
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equilibrium?
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enter and see ---
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Computational issue..

e How to compute
vapour-liquid
equilibrium?

e How to deal
with long chain
hydrocarbons?
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‘ But my system s
extremely small, is

the statistic reliable?

Molecular dynamics: press
enter and see -
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Critical Temperature and Density
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Methane cars: the technological obstacle

Gasoline, 1 liter

0.036 MJ 34.2 MJ



Methane versus gasoline

Volumetric Energy Density of Fuels
B Gasoline

B Liquid CH, (112 K)
B CH,, 200 bar, 298 K

35

Energy density (MJ/L)

LNG CNG

Makal et al. Chem. Soc. Rev. 2012 41.23, 7761-7779.






The deliverable capacity

= 65 bar = 5.8 bar
ALY S N
5w | — g,
Methane adsorbed Methane adsorbed
(v STPN) (v STPA)
at tank charging at tank discharge
pressure pressure

ARPA-E (DOE) target: 315 m3 STP methane/m3
adsorbent



An optimal heat of adsorption?

Goal: maximize deliverable capacity

Methane loading (v STP/v)




An optimal heat of adsorption?

Goal: maximize deliverable capacity

Methane loading (v STP/v)




An optimal heat of adsorption?

Goal: maximize deliverable capacity

LR R I R PR R R

Methane loading (v STP/v)

0 10 20 30 40 20 60 /0

Pressure '_t](‘”)

Alan L. Myers




An optimal heat of adsorption?

Goal: maximize deliverable capacity

Methane loading (v STP/v)

.- T T R R R R R T PR R R

0 10 20 30 40 20 60 /0

Pressure (bar)

Alan L. Myers




In silico screening of zeolites

3, ___MFI methane isotherms._

Simulation 308 K
Simulation 277 K
Simulation 373 K
2.5 | m—a Simulation 408 K
e®e Experiment 308 K
e®e Experiment 277 K
e®e Experiment 373 K
000 Experiment 408 K
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Loading (mol/kg)

1.0}

0.5}

0.0 : 2 —r p y
10 10 10° 107 10°
Fugacity of the bulk fluid phase (Pa)

MFI expt’l data: Sun et al. (1998) J. Phys. Chem. B. 102(8), 1466-1473.
Zhu et al. (2000) Phys. Chem. Chem. Phys. 2(9), 1989-1995.
Force field: Dubbeldam et al. (2004) Phys. Rev. 93(8), 088302.



In silico screening of zeolites

200

150

50

Deliverable capacity @ 298 K (v STP/v)
o
o

Optimal AH 4 of Bhatia and Myers

5 10 - 15.1 20 25 30 35
Heat of adsorption (kJ/mol CH, adsorbed)

C. Simon et al. (2014) Phys. Chem. Chem. Phys. 16 (12), 5499-5513
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Enthalpy vs. entropy

AS not the same for all materials

Wide range of AH that yields optimal material
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Can we find a material that
meets the DOE target?

Screening > 100,000 materials
zeolites

Metal organic Frameworks, MOFs (Snurr and
co-workers)

zeolitic imidazolate frameworks, ZIFs,
(Haranczyk)

Polymer Porous Networks, PPNs (Haranczyk)
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Insight from the model
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Example 3: make a model system

| ‘tive interactions needed to
Your theory is WRONG -

It disagrees with the
experiments

e A e forces are needed for vapour-
liquid e, rium

e Theories predic. \is ..

BUT:

e There no molecules with only attractive
interactions \l/
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Example 3: make a mode’ -

Your theory is WRONG -
it disagrees with the
experiments

BUT:

- My theory is RIGHT:
‘tive INt ¢ this experimentalist
refuses to use
molecules that do not
have any attractive

\/ ; . :
A, e force interactions

liquid e, rium

Theories predic. his ..

There no molecules with only attractive
interactions \l/

\4
How to test the theory? Eﬂ

26
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But we can simulate hard spheres ..

* Bernie Alder carried out
Molecular Dynamics
simulations of the freezing
of hard spheres

e But, .... did the scientific
community accept this
computer results as
experimental evidence ...

e ... during a Gordon
conference it was proposed
to vote on it ...

e ... and it was voted against
the results of Alder

27



Experiments are now possible

.. But not on
molecules

but on colloids:
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.. But not on
molecules

but on colloids:

d 044 e
3
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- oo t.. .,;.. o =
1 A spemn §
0 Fluid "

— \
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From the following article: Eerms (Vum™)

Anand Yethiraj and Alfons van Blaaderen
Nature 421, 513-517 (30 January 2003)


http://www.nature.com/nature/journal/v421/n6922/full/nature01328.html

Molecular Dynamics

e Theory: J_g
d°r r'

Fzm? \ vy
Fy

MD

e Compute the forces on the
particles

e Solve the equations of motion
e Sample after some timesteps

29



Monte Carlo

Generate a set of configurations with the
correct probability

Compute the thermodynamic and transport
properties as averages over all
configurations
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Monte Carlo

What is the correct probability?
Statistical Thermodynamics

Generate a set of cor”.yurations with the
correct probability

Compute the thermodynamic and transport
properties as averages over all
configurations

. S MC
Oo (0] _ . r]
/Q/ 7
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Monte Carlo

Generate a set of configurations with the
correct probability

Compute the thermodynamic and transport
L-operties as averages over all
cor rations

How to compute these o MC
properties from a simulation? o o o

30
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Classical and Statistical Thermodynamics

Problem: we have a set of coordinates and
velocities -what to do with it?

e Statistical Thermodynamics

e The probability to find a particular
configuration

e  Properties are expressed in term of averages

* Free energies

e Thermodynamics: relation of the free
energies to thermodynamic properties

31



