
Molecular Simulation

Background



Why Simulation?

1. Predicting properties of (new) materials

2. Understanding phenomena on a
molecular scale.

3. Reproducing known phenomena.

Testing simulations by:

Reproducing known phenomena.



THE question:

“Can we predict the
macroscopic properties of

(classical) many-body
systems?”



“Translation”   In principle “Yes”.
Provided that we know the position, velocity and

interaction of all molecules, then the future behavior is
predictable,…BUT

NEWTON: F=m a

LAPLACE:
Nous devons donc envisager l'état présent de l'universe comme l'effet

de son état antérieur et comme la cause de delui qui va suivre. Une
intelligence qui, pour un instant donné, connaîtrait toutes les forces
dont la nature est animée et la situation respective des êtres qui las

composent, si d'ailleurs elle était assez vaste pour soumettre ces
données à l'Analyse, embrasserait dans la même formule les

mouvements des plus grands corps de l'univers et ceux du plus lèger
atome : rien ne serait incertain pour elle, et l'avenir, comme le passé,

serait présent à ses yeux.



…. There are so many molecules.

This is why, before the advent of the computer, it was
impossible to predict the properties of real materials.

What was the alternative?

1. Smart tricks (“theory”)

Only works in special cases

2. Constructing model (“molecular lego”)…



J.D. Bernal’s “ball-bearing model”
of an atomic liquid…



The computer age (1953…)

With computers we can follow the behavior of hundreds to
hundreds of millions  of molecules.

Mary-Ann Mansigh

Berni Alder

Tom Wainwright



The limits of Simulation

Brute-force simulations can never bridge all the
scales between microscopic
(nanometers/picoseconds) and macroscopic
(cells, humans, planets).

Hence: we need different levels of description
(“coarse graining”) - and we need input from
experiments at many different levels to validate
our models.



The limits of Experiments

Increasingly, experiments generate far more data
than humans can digest.

Result: “Experulation”.

Simulations are becoming an integral part of the
analysis of experimental data.



A brief summary of:

Entropy, temperature, Boltzmann distributions
and the Second Law of Thermodynamics



The basics:

1. Nature is quantum-mechanical

2. Consequence:

Systems have discrete quantum states.

For finite “closed” systems, the number of
states is finite (but usually very large)

3. Hypothesis: In a closed system, every
state is equally likely to be observed.

4. Consequence:                                 ALL of equilibrium
Statistical Mechanics and Thermodynamics



First: Simpler example (standard statistics)

Draw N balls from an infinite vessel that contains an
equal number of red and blue balls

∞ ∞





Now consider two systems with total energy E.

This function is very sharply peaked (for macroscopic systems)

N1,V1,E1 N2,V2,E2

no. of states:
Ω(N1,V1,E1)

no. of states:
Ω(N2,V2,E2)



Now, allow energy

exchange between

1  and 2.

N1,V1,E1 N2,V2,E2

E1+ΔE E2-ΔE



So:

With:



This is the condition for thermal equilibrium (“no
spontaneous heat flow between 1 and 2”)

Normally, thermal equilibrium means: equal
temperatures…



Let us define:

Then, thermal equilibrium is
equivalent to:

This suggests that β is a function of T.

Relation to classical thermodynamics:



Conjecture:     ln Ω = S

Almost right.

Good features:

•Extensivity

•Third law of thermodynamics comes for
free

Bad feature:

•It assumes that entropy is dimensionless
but (for unfortunate, historical reasons, it
is not…)



We have to live with the past, therefore

With kB=  1.380662 10-23 J/K

In thermodynamics, the absolute (Kelvin)
temperature scale was defined such that

But we found (defined):



And this gives the “statistical” definition of temperature:

In short:

Entropy and temperature are both related to
the fact that we can COUNT states.



How large is Ω?

For macroscopic systems, super-astronomically large.

For instance, for a glass of water at room temperature:

Macroscopic deviations from the second law of
thermodynamics are not forbidden, but they are
extremely unlikely.





Consider a “small”
system (a molecule, a
virus, a mountain) in
thermal contact with
a much larger system
(“bath”).

The total energy is fixed. The higher the energy of
the small system, the lower the energy of the bath.

What happens to the total number of
accessible states?

ε1 E-ε1



But, as β=1/kBT :

The probability that the small system is in a given (“labeled”)
state with energy εi is



This is the Boltzmann distribution:

“Low energies are more likely than high
energies”



The probability to find the system in state I is:

Hence, the average energy is



Therefore

This can be compared to the thermodynamic
relation



This suggests that the partition sum

is related to the Helmholtz free energy through



Remarks
We have assumed quantum mechanics (discrete states) but
often we are interested in the classical limit
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Integration over the momenta can be carried out for most systems:

How?

Volume of phase space

Particles are indistinguishable 



Steps:

1. We can introduce functions of operators. E.g.

Example. For an energy eigenstate i:



2. The “trace” of a quantum mechanical operator
does not depend on the basis set

Example:



3. We can write the unit operator I as

Example:

The momentum p is related to the
wavevector q, via



Now apply to partition function:

Choose for  j  the position eigenstates r:

This we cannot compute.



Now write: H = K + U, then

This, we can still not compute. What we can  compute is:

or (possibly):



But for non-commuting operators A and B,

We could use these simplifications if:

However: in the classical limit, we
can write



In the classical limit we get:

Or…



Remarks

Define de Broglie thermal wave length:
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Partition function:
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Check: ideal gas
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Relating macroscopic observables to
microscopic quantities

Example:

Heat capacity

Pressure

Diffusion coefficient



Fluctuation expression for heat capacity.

Recall:

with



Then the heat capacity is

Using our expression for E:



Both the numerator and denominator depend on β.

And, finally:



COMPUTING THE PRESSURE:



Introduce “scaled” coordinates:











For pairwise additive forces:

Then



And we can write

i and j are dummy variable hence:



But as action equals reaction (Newton’s 3rd law):

And hence

Inserting this in our expression for the pressure, we get:

Where 



What to do if you cannot use the virial expression?


