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I. ROTATIONS

Angular momentum theory is the theory of rotations. We discuss the rotation of vectors in R3, wave functions, and
linear operators. These objects are elements of linear spaces. In angular momentum theory it is sufficient to consider
finite dimensional spaces only.

• Rotations R̂ are linear operators acting on an n−dimensional linear space V , i.e.,

R̂(~x+ ~y) = R̂~x+ R̂~y, R̂λ~x = λR̂~x for all ~x, ~y ∈ V. (1)

We introduce an orthonormal basis {~e1, ~e2, . . . , ~en} so that we have

(~ei, ~ej) = δij , ~x =
∑

i

xi~ei, xi = (~ei, ~x). (2)



2

We define the column vector x = (x1, x2, . . . , xn)T , so that

~y = R̂~x, yi =
∑

j

Rijxj , Rij = (~ei, R̂~ej), y = Rx. (3)

Unless otherwise specified we will work in the standard basis {ei}. The multiplication of linear operators is
associative, thus for three rotations we have (R1R2)R3 = R1(R2R3).

• Rotations form a group:

– The product of two rotations is again a rotation, R1R2 = R3.

– There is one identity element R = I.

– For every rotation R there is an inverse R−1 such that RR−1 = R−1R = I.

• The rotation group is a three (real) parameter continuous group. This means that every element can be labeled
by three parameters = (ω1, ω2, ω3). Furthermore, if

R(ω1) = R(ω2)R(ω3) (4)

we can express the parameters ω1 as analytic functions of ω2 and ω3. This means that we are allowed to take
derivatives with respect to the parameters, which is the mathematical way of saying that there is such a thing
as a “small rotation”. The choice of parameters is not unique for a given group.

• Rotations are unitary operators

(Rx, Ry) = (x,y), for all x and y. (5)

The adjoint or Hermitian conjugate A† of a linear operator A is defined by

(Ax,y) = (x, A†y), for all x and y. (6)

For the matrix elements of A† we have

(A†)ij = A∗
ji. (7)

Hence, for a rotation matrix we have

(Rx, Ry) = (x, R†Ry) = (x,y), (8)

i.e., R†R = I, and R† = R−1. For the determinant we find

det(R†R) = det(R)∗ det(R) = det(I) = 1, | det(R)| = 1. (9)

By definition rotations have a determinant of +1.

• In R3 there is exactly one such group with the above properties and it is called SO(3), the special (determinant
is +1) orthogonal group of R3. In C2 (two-dimensional complex space) there is also such a group called SU(2),
the special (again since the determinant is +1) unitary group of C2. There is a 2:1 mapping between SU(2)
and SO(3). The group SU(2) is required to treat half-integer spin.

A. Small rotations in SO(3)

By convention let the parameters of the identity element be zero. Consider changing one of the parameters (φ ∈ R).
Since R(0) = I we can always write

R(ǫ) = I + ǫN. (10)

Since R†R = I we have

(I + ǫN)†(I + ǫN) = I + ǫ(N † +N) + ǫ2N †N = I, (11)
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thus, for small ǫ

N † +N = 0, N † = −N. (12)

The matrix N is said to be antihermitian, N∗
ij = −Nji. In R3 we may write

N =





0 −n3 n2

n3 0 −n1

−n2 n1 0



 . (13)

The signs of the parameters are of course arbitrary, but with the above choice we have

Nx =





n2x3 − n3x2

n3x1 − n1x3

n1x2 − n2x1



 = n× x. (14)

For small rotations we thus have

x′ = R(n, ǫ)x = x + ǫn× x. (15)

Clearly, the vector n is invariant under this rotation

R(n, ǫ)n = n + ǫn× n = n. (16)

For the product of two small rotations around the same vector n we have

R(n, ǫ1)R(n, ǫ2) = (I + ǫ1N)(I + ǫ2N) (17)

= I + (ǫ1 + ǫ2)N + ǫ1ǫ2N
2 (18)

≈ R(n, ǫ1 + ǫ2). (19)

We now define non-infinitesimal rotations by requiring for arbitrary φ1 and φ2 that

R(n, φ1)R(n, φ2) = R(n, φ1 + φ2). (20)

We may now proceed in two ways to obtain an explicit formula for R(n, φ). First, we may observe that “many small
rotations give a big one”:

R(n, φ) = R(n, φ/k)k. (21)

By taking the limit for k → ∞ and using the explicit expression for an infinitesimal rotation we get (see also Appendix
A)

R(n, φ) = lim
k→∞

(I +
φ

k
N)k =

∞
∑

k=0

1

k!
(φN)k = eφN . (22)

Note that a function of a matrix is defined by its series expansion.
Alternatively we may start from eq. (20) and take the derivative with respect to φ1 at φ1 = 0 to obtain the

differential equation

d

dφ1
R(n, φ1)|φ1=0R(n, φ2) =

d

dφ1
R(n, φ1 + φ2)|φ1=0 =

d

dφ2
R(n, φ2), (23)

with d
dφ1

R(n, φ1) = N this gives

d

dφ
R(n, φ) = NR(n, φ). (24)

Solving this equation with the initial condition R(n, 0) = I again gives R(n, φ) = eφN .
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B. Computing e
φN

This problem is similar to solving the time-dependent Schrödinger equation, but it involves an antihermitian, rather
than an Hermitian matrix. Therefore, we define the matrix Ln = iN , which is easily verified to be Hermitian

L† = (iN)† = −i(−N) = L. (25)

Thus, we have

R(n, φ) = e−iφL. (26)

The general procedure for computing functions of Hermitian matrices starts with computing the eigenvalues and
eigenvectors

Lui = λiui. (27)

This may be written in matrix notation

LU = UΛ, U = [u1u2 . . .un], Λij = λiδij . (28)

For Hermitian matrices the eigenvalues are real and the eigenvectors may be orthonormalized so that U is unitary
and we have

L = UΛU †. (29)

If a function f is defined by its series expansion

f(x) =
∑

k

fkx
k (30)

we have

f(L) =
∑

k

fkL
k =

∑

k

fk(UΛU †)k =
∑

k

fkUΛkU † = U(
∑

k

fkΛk)U † = Uf(Λ)U †. (31)

For the diagonal matrix Λ we simply have

[f(Λ)]ij =
∑

k

fk(λiδij)
k =

∑

k

fkλ
k
i δ

k
ij = f(λi)δij . (32)

Thus after computing the eigenvectors ui and eigenvalues λi of L we have

R(n, φ)x = e−iφLx = Ue−iφΛU †x =
∑

k

e−iφλkuk(uk,x). (33)

Note that the eigenvalues of R(n, φ) are e−iφλk . Since the λk’s are real, these (three) eigenvalues lie on the unit circle
in the complex plane. Clearly, this must hold for any unitary matrix, since for any eigenvector u of some unitary
matrix U with eigenvalue λ we have

(Uu, Uu) = (λu, λu) = λ∗λ(u,u) = (u,u), i.e., |λ| = 1.. (34)

Note that R(n, φ)n = n. This does not yet prove that any R can be generated by an infinitesimal rotation. Since R
is real for every complex eigenvalue λ there must be an eigenvalue λ∗. The three eigenvalues lie on the unit circle in
the complex plane and their product is equal to the determinant (+1), therefore R must have at least one eigenvalue
equal to 1. In this way, one can prove that any rotation is a rotation around some axis n.

C. Adding the series expansion

As an alternative approach we may start from

eφN =

∞
∑

k=0

1

k!
(φN)k. (35)
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From Eq. (27) it follows that

Nuk = −iλkuk ≡ αkuk. (36)

For the present discussion we will not actually need the eigenvectors and eigenvalues, we will only use the fact that
they exist. We define the matrix A(N)

A(N) = (N − α1I)(N − α2I)(N − α3I). (37)

It is easily verified that for any eigenvector uk we have

A(N)uk = 0. (38)

Since any vector may be written as a linear combination of the eigenvectors uk we actually know that A(N) = 03×3,
the zero matrix in R3. Thus, the polynomial A(N) is referred to as a annihilating polynomial. Expanding A(N) gives

A(N) = N3 + c2N
2 + c1N + c0I = 0, (39)

where the coefficients ck can easily be expressed as functions of the eigenvalues αk. We now observe that N3 may be
expressed as a linear combination of lower powers of N :

N3 = −c2N2 − c1N − c0I (40)

From this equation we may directly compute the coefficients ck, without knowing the eigenvalues αk. By direct
multiplication we construct the matrices Nk, k = 2, 3. By putting the matrix elements of these matrices in column
vectors of length 3 × 3 = 9 we can turn the matrix equation into a set of 9 equations with 3 unknowns ck, k = 0, 1, 2.
It may be of interest to know that this procedure is quite general: for a completely arbitrary n × n matrix A in Cn

there exist an annihilating polynomial of degree n. It can always be found be plugging the matrix A back into the
characteristic polynomial P (λ) ≡ det(A− λI). In this case we have (see Appendix A)

N3 = −N. (41)

so that

N2k+1 = (−1)kN for k ≥ 0 (42)

N2k+2 = (−1)kN2 for k ≥ 1. (43)

As a consequence, the infinite sum simplifies to

eφN = I +

∞
∑

k=1

1

k!
φkNk = I + sinφN + (1 − cosφ)N2. (44)

D. Basis transformations of vectors and operators

We will refer to the basis {ek} used so far as the space fixed basis. We now introduce a new orthonormal basis
{b} which we will refer to as the body fixed basis. These names are chosen with a typical application in a quantum
mechanical problem in mind. If the body fixed coordinates are indicated with a prime we have

∑

k

ekxk =
∑

k

bkx
′
k, x = Bx′. (45)

Let a linear operator Â be represented by the matrix A in the space fixed basis. We now define a transformed or
rotated operator Â′, which is represented by the matrix A′ in space fixed coordinates, by the requirement that it is
represented by the matrix A when expressed in body fixed coordinates:

(bi, A
′bj) = Aij , B†A′B = A. (46)

Using the unitarity of B we get

A′ = BAB†. (47)
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Using this definition we may also transform any function of A defined by its series expansion

f(A)′ = Bf(A)B† = B(
∑

k

fkA
k)B† =

∑

k

fk(BAkB†) =
∑

k

fk(A′)k = f(A′). (48)

As an example we consider the transformation of a rotation operator

R′ = BR(n, φ)B† = BeφNB† = eφBNB†

. (49)

We work out the exponent by considering

BNB†x = B(n ×B†x) (50)

For an arbitrary unitary transformation of a cross product we have the rule (see Appendix A)

Ux × Uy = det(U)U(x × y) (51)

so that we have

B(n×B†x) = (Bn) × (BB†x) = (Bn) × x ≡ NBnx (52)

Thus, with the notation Nn = N ,

BNnB
† = NBn (53)

and for the transformed rotation

BR(n, φ)B† = eφBNnB†

= R(Bn, φ). (54)

E. Vector operators

Define the three matrices Ni ≡ Nei
. The matrix N can now be expressed as a linear combination of these matrices

N =





0 −n3 n2

n3 0 −n1

−n2 n1 0



 = n1





0 0 0
0 0 −1
0 1 0



 + n2





0 0 1
0 0 0
−1 0 0



 + n3





0 −1 0
1 0 0
0 0 0



 (55)

= n1N1 + n2N2 + n3N3 = n ·N, (56)

where we introduced the vector operator N . The components of the vector operator transform as

BNjB
† = BNej

B† = NBej
= Nbj

= bj ·N =
∑

i

NiBij . (57)

We also define the Hermitian vector operator L = iN for which we also have

BLjB
† =

∑

i

LiBij (58)

Since B is an arbitrary orthonormal matrix we may take B = R(n, φ) = e−iφn·L which gives

e−iφnLLje
iφnL =

∑

i

LiRij(n, φ) (59)

For two operators A and B we have a relation which is sometimes referred to as the Baker-Campbell-Hausdorff
form (appendix A)

eABe−A =

∞
∑

k=0

1

k!
[A,B]k, (60)
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where the repeated commutator [A,B]k is defined by

[A,B]0 = B

[A,B]1 = [A,B] = AB −BA (61)

[A,B]k = [A, [A,B]k−1]. (62)

The importance of this relation is that the (repeated) commutation relations fully define the exponential form. Hence,
from Eq. (59) we find for arbitrary angular momentum operators

R̂(n, φ)̂jR̂†(n, φ) = RT (n, φ)̂j. (63)

The commutation relations of two arbitrary antihermitian matrices Na and Nb follow from a property of the cross
product (see appendix A)

x × (y × z) + y × (z × x) + z × (x × y) = 0. (64)

Using the property x × y = −y × x we find

a × (b × x) − b× (a × x) − (a × b) × x = 0. (65)

In matrix notation this gives

NaNbx −NbNax −Na×bx = 0. (66)

Since this holds for any x we obtain the commutation relation

[Na, Nb] = Na×b. (67)

The cross product of two basis vectors in an orthonormal basis may be written using the Levi-civita tensor (e123 = 1,
it changes sign when two indices are permuted),

ei × ej =
∑

k

eijkek, (68)

so that we can write the commutation relations for the components of the vector operator N as

[Ni, Nj ] =
∑

k

eijkNk. (69)

From this equation we immediately find the commutation relations for the Hermitian operators Li as

[Li, Lj ] =
∑

k

ieijkLk. (70)

These commutation relations, together with Eq. (60) allow us to write the left hand side of Eq. (59) as a linear
combination of the operators Li. The right hand side is also a linear combination of the operators Li. Thus, we can
immediately solve for the matrix elements Rij(n, φ), whenever the operators Li are linearly independent (i.e., when
∑

k akLk = 0 ⇒ ak = 0).
One other example of Hermitian operators satisfying the commutation relations Eq. (70) are the generators of

SU(2),

σ1 =
1

2

[

0 1
1 0

]

, σ2 =
1

2

[

0 −i
i 0

]

, σ3 =
1

2

[

1 0
0 −1

]

. (71)

Note that e−i(φ+2π)σk = −e−iφσk . This is in agreement with the 2 : 1 mapping between SU(2) and SO(3) mentioned
earlier.
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F. Euler parameters

So far we have used the (n, φ) parameterization of SO(3). Since Euler parameters are used widely we describe
them here. A linear operator in R3 is defined by its action on the three basis vectors. Let us assume that a rotation
operator R maps the basis vector e3 onto e′3. We can then write the matrix R as

R = R(e′3, γ)R1, (72)

where R1 may be any rotation for which e′3 = R1e3. If the polar angles of e′3 are (β, α) we can take

R1 = R(e3, α)R(e2, β). (73)

Thus, any rotation R can be written as

R(α, β, γ) = R(R1e3, γ)R1 = R1R(e3, γ)R
†
1R1, (74)

so that and

R(α, β, γ) = R(e3, α)R(e2, β)R(e3, γ) (75)

From this derivation we see that the ranges of the parameters required to span SO(3) are

0 ≤ α < 2π, 0 ≤ β < π, 0 ≤ γ < 2π. (76)

For the inverse we have

R(α, β, γ)−1 = R(e3,−γ)R(e2,−β)R(e3,−α). (77)

We may bring −β back into the range [0, π] by inserting R(e3, π)R(e3,−π) at both sides of R(e2,−β)twice and by
using the relation

R(e3,−π)R(e2,−β)R(e3, π) = R(−e2,−β) = R(e2, β), (78)

which gives

R(α, β, γ)−1 = R(e3,−γ + π)R(e2, β)R(e3,−α− π). (79)

We may also define a volume element for integration

dτ = dα sinβdβ dγ, (80)

which has the important property that for any function f(α, β, γ) the integral is invariant under rotation of the
function f . The definition of a “rotated function” is given in the next section.

G. Rotating wave functions

We may extend the definition of rotations in R3 to the rotation of one particle wave functions (Ψ(x)) by Wigner’s
convention

(R̂Ψ)(x) ≡ Ψ(R−1x). (81)

Usually, Ψ will be an element of some Hilbert space. For our purposes it is sufficient to think of Ψ as an element of
some finite dimensional linear space V . Of course, we must assume that R̂Ψ is also an element of V , whenever Ψ ∈ V .
We use the hat (̂ ) to distinguish the operators on V from the corresponding operators in R3.

The inverse in the definition is important since it gives

R̂1(R̂2Ψ) = (R̂1R̂2)Ψ. (82)

This is readily verified:

[R̂1(R̂2Ψ)](x) = (R̂2Ψ)(R̂−1
1 x) = Ψ(R̂−1

2 R̂−1
1 x) = Ψ[(R̂1R̂2)

−1x] = [(R̂1R̂2)Ψ](x). (83)
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Note that Wigner’s convention is consistent with Dirac notation

Ψ(x) = 〈x|Ψ〉, 〈x|RΨ〉 = 〈R†x|Ψ〉 = 〈R−1x|Ψ〉. (84)

For small rotations we have

R̂(n, ǫ)Ψ(x) = Ψ(x− ǫn× x). (85)

To first order in ǫ we have in general

f(x + ǫy) = f(x) +
∑

k

ǫyk

∂

∂xk

f(x) ≡ f(x) + ǫy · ∇f(x), (86)

so that we may write

f(x − ǫn× x) = [1 − ǫ(n × x) · ∇]f(x). (87)

Using n × x · ∇ = eijknixj∇k = n · x×∇ we find

R̂(n, ǫ) = 1 − ǫn · x ×∇ = 1 − iǫn · L̂, (88)

where we defined

p ≡ −i∇ (89)

L̂ ≡ x × p. (90)

Using integration by parts, and assuming that the surface term vanishes, it is easy to show that the operators ∇k are
antihermitian, i.e. (∇kf, g) = (f,−∇kg). The multiplicative operators xk are Hermitian and it is also straightforward

to evaluate the commutator [∇i, xj ] = δij . It is left as an exercise for the reader to verify that the operators L̂k are
Hermitian and that they satisfy the commutation relations

[L̂i, L̂j ] = i
∑

k

eijkL̂k. (91)

We may now follow the same procedure as before to find the expression for a non-infinitesimal rotation

R̂(n, φ) = e−iφn·L̂. (92)

If we choose a n dimensional (orthonormal) basis {|i〉, i = 1, . . . , n} in the space V we may represent the operators R̂

and L̂k by n dimensional matrices. For rotations we will denote these matrices as D(R̂). By definition

Dij(R̂) = 〈i|R̂|j〉. (93)

We also use the notation D(n, φ) = D[R̂(n, φ)]. The unitary matrices D(R̂) are a representation of SO(3), since

R(n1, φ1)R(n2, φ2) = R(n3, φ3) (94)

implies

D(n1, φ1)D(n2, φ2) = D(n3, φ3). (95)

This representation may be reducible. That is, it may be possible to find a unitary transformation of the basis that
will simultaneously block diagonalize the matrices D(R̂) for all R̂.

II. IRREDUCIBLE REPRESENTATIONS

Suppose we can divide the space V into a subspace S and its orthogonal complement T , i.e. S ⊕ T = V , such that
for all Ψ ∈ S and for all R̂(n, φ) we have R̂Ψ ∈ S. In this case S is called an invariant subspace. Since the operators

R̂ are unitary T must also be an invariant subspace. If not, we could find some f ∈ T and g ∈ S such that for some
R̂ we would have (g, R̂f) 6= 0. However, that would mean that (R̂−1g, f) 6= 0, which is in contradiction with S being
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an invariant subspace. Thus, if we construct a basis {|i〉, i = 1, . . . , n} where the first m vectors {|i〉, i = 1, . . . ,m}
span the space S and the vectors {|i〉, i = m+ 1, . . . , n} span the space T we find that all matrices D(R̂) have a block
structure.

Suppose some Hermitian operator Â commutes with all operators R̂(n, φ)

[Â, R̂(n, φ)] = 0. (96)

Let Sλ be the space spanned by all eigenvectors fi with eigenvalue λ

Âfi = λfi. (97)

For each each f ∈ Sλ we find that g = R̂f also has eigenvalue λ

Âg = ÂR̂f = R̂Âf = λg, (98)

i.e., g ∈ Sλ, which shows that Sλ is an invariant subspace. In order to find an operator Â that commutes with each
R̂ it is sufficient to find an operator that commutes with L̂1, L̂2, and L̂3.

From the commutation relations of L̂k we can show that the Hermitian operator

L̂2 = L̂2
1 + L̂2

2 + L̂2
3 (99)

commutes with L̂1, L̂2, and L̂3. It turns out that the commutation relations also allow us to derive the possible
eigenvalues of L̂2 and the dimensions of the subspaces. Furthermore, within each eigenspace of L̂2 we can construct
a basis of eigenfunctions of the L̂3 operator and we can even derive the matrix elements of all operators L̂k in this
basis. We summarize this general result:

A linear (or Hilbert) space V which is invariant under the Hermitian operators ĵi, i = 1, 2, 3 that satisfy the
commutation relations

[ĵi, ĵj ] = i
∑

k

ǫijk ĵk (100)

decomposes into invariant subspaces Vj of ĵ2 = ĵ21 + ĵ22 + ĵ23 . The spaces Vj are spanned by orthonormal kets

|j,m〉, m = −j, . . . , j, (101)

with

ĵ2|j,m〉 = j(j + 1)|j,m〉, (102)

ĵ3|j,m〉 = m|j,m〉, (103)

ĵ±|j,m〉 = C±(j,m)|j,m± 1〉, (104)

with

ĵ± = ĵ1 ± iĵ2 (105)

C±(j,m) =
√

j(j + 1) −m(m± 1). (106)

The ĵ± are the so called step up/down operators.
The proof of the existence of basis (101) is well-known. Briefly, the main arguments are:

• As [ĵ2, ĵ3] = 0, we can find a common eigenvector |a, b〉 of ĵ2 and ĵ3 with ĵ2|a, b〉 = a2|a, b〉 and ĵ3|a, b〉 = b|a, b〉.
Since it is easy to show that j2 has only non-negative real eigenvalues, we write its eigenvalue as a squared
number.

• Considering the commutation relations [ĵ3, ĵ±] = ±ĵ± and [ĵ2, ĵ±] = 0, we find, that ĵ2ĵ+|a, b〉 = a2ĵ+|a, b〉 and

ĵ3ĵ+|a, b〉 = (b+ 1)ĵ+|a, b〉. Hence ĵ+|a, b〉 = |a, b+ 1〉

• If we apply ĵ+ now k + 1 times we obtain, using ĵ†+ = ĵ−, the ket |a, b+ k + 1〉 with norm

〈a, b+ k|ĵ−ĵ+|a, b+ k〉 = [a2 − (b + k)(b+ k + 1)]〈a, b+ k|a, b+ k〉. (107)

Thus, if we let k increase, there comes a point that the norm on the left hand side would have to be negative
(or zero), while the norm on the right hand side would still be positive. A negative norm is in contradiction
with the fact that the ket belongs to a Hilbert space. Hence there must exist a value of the integer k, such that
the ket |a, b+ k〉 6= 0, while |a, b+ k + 1〉 = 0. Also a2 = (b+ k)(b + k + 1) for that value of k.
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• Similarly l+ 1 times application of ĵ− gives a zero ket |a, b− l− 1〉 with |a, b− l〉 6= 0 and a2 = (b− l)(b− l− 1).

• From the fact that a2 = (b+k)(b+k+1) = (b− l)(b− l−1) follows 2b = l−k, so that b is integer or half-integer.
This quantum number is traditionally designated by m. The maximum value of m will be designated by j.
Hence a2 = j(j + 1).

• Requiring that |j,m〉 and ĵ±|j,m〉 are normalized and fixing phases, we obtain the well-known formula (105).

Summarizing, in V we have the basis {|j,m〉, j = 0, 1
2 , 1, . . . ;m = −j, . . . , j}. Not all values of j need to occur in a

given space V . The angular momentum operators are diagonal in j, and their matrix elements are

〈jm′|ĵ2|jm〉 = j(j + 1)δm′m (108)

〈jm′|ĵ1|jm〉 =
1

2
[C+(j,m)δm′,m+1 + C−(j,m)δm′,m−1] (109)

〈jm′|ĵ2|jm〉 = −i1
2

[C+(j,m)δm′,m+1 − C−(j,m)δm′,m−1] (110)

〈jm′|ĵ3|jm〉 = mδm′m. (111)

A. Rotation matrices

The rotation operators in V are, by definition

R̂(n, φ) = e−iφn·ĵ. (112)

The matrix representation D(R̂) is block diagonal in j. The matrix elements of the diagonal blocks Dj are

Dj
k,m(n, φ) ≡ 〈jk|R̂(n, φ)|jm〉. (113)

Thus, for a rotated vector we have

R̂|jm〉 =
∑

k

|jk〉〈jk|R̂|jm〉 =
∑

k

|jk〉Dj
km(R̂). (114)

The matrix elements of the rotation operator themselves can act as functions on which we may define the action of a
rotation operator according to Wigner’s convention:

R̂1D
j
mk(R̂2) = Dj

mk(R̂−1
1 R̂2) =

∑

m′

Dj
mm′(R̂

−1
1 )Dj

m′k(R̂2). (115)

Here we used the general property of representations that D(R̂1R̂2) = D(R̂1)D(R̂2). When we compare this result

with Eq. (114) we find that the function Dj
m,k(R̂) almost behaves as a ket |jm〉, except that the inverse of R̂1 appears.

This can be remedied by starting with the complex conjugate of a D-matrix element:

R̂1D
j,∗
mk(R̂2) =

∑

m′

Dj,∗
mm′(R̂

−1
1 )Dj,∗

m′k(R̂2) =
∑

m′

Dj,∗
m′k(R̂2)D

j
m′m(R̂1). (116)

where we used another property of representations: D(R̂−1) = D(R̂)−1.
Many properties of D-matrices are independent of the parameterization that we choose. However, if we do need a

parameterization, the Euler parameters are very useful, since they allow us to factorize any D-matrix in D-matrices
depending on a single parameter:

D[R̂(α, β, γ)] = D[R̂(e3, α)]D[R̂(e2, β)]D[R̂(e3, γ)] ≡ D(e3, α)D(e2, β)D(e3, γ). (117)

With the procedure for exponentiating an operator described in Section I B it is straightforward to derive

Dj
km(e3, γ) = 〈jk|e−iγĵ3 |jm〉 = e−imγδkm. (118)

To find Dj(e2, β) we must exponentiate −iβĵ(j)2 , where ĵ
(j)
2 is the matrix representation of ĵ2 in Vj. Note that this

matrix is real. Usually it is denoted by dj(β) ≡ Dj(e2, β) so that we have

Dj
mk(α, β, γ) = e−imαdj

mk(β)e−ikγ . (119)
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For j = 0, 1
2 , 1 it is not too difficult to carry out the exponentiation. For m = j, j − 1, . . . ,−j, i.e., the dj

jj element in
the upper left corner we find

d0(β) = 1 (120)

d
1

2 (β) =

(

cos β
2 − sin β

2

sin β
2 cos β

2

)

(121)

d1(β) =







1+cos β
2 − sin β√

2

1−cos β
2

sin β√
2

cosβ − sin β√
2

1−cos β
2

sin β√
2

1+cos β
2






. (122)

There is also a general formula:

dj
km(β) = [(j + k)!(j − k)!(j +m)!(j −m)!]

1

2

∑

s

(−1)k−m+s(cos β
2 )2j+m−k−2s(sin β

2 )k−m+2s

(j +m− s)!s!(k −m+ s)!(j − k − s)!
, (123)

where s takes all integer values that do not lead to a negative factorial.
Several symmetry relations can be derived for D matrices. From the Euler angles of the inverse of a rotation Eq.

(79) we have

D(−γ,−β,−α) = D(−γ + π, β,−α− π). (124)

For α = γ = 0 this gives

dj
mk(−β) = e−imπdj

mk(β)eikπ = (−1)m−kdj
mk(β). (125)

Note that m− k must be integer, hence (−1)−m+k = (−1)m−k. Since dj is real

dj
mk(−β) = dj

km(β) = (−1)m−kdj
mk(β). (126)

From the explicit formula for the dj matrix we see

dj
km(β) = dj

−m,−k(β). (127)

From the last two equation we derive

Dj,∗
km(R̂) = (−1)k−mDj

−k,−m(R̂). (128)

If j and j′ are both either integer of half integer, the D matrices satisfy the following orthogonality relations

∫ 2π

0

dα

∫ π

0

sinβdβ

∫ 2π

0

dγ Dj,∗
mk(α, β, γ)Dj′

m′k′(α, β, γ) =
8π2

2j + 1
δmm′δkk′δjj′ . (129)

This follows from a generalization of the great orthogonality theorem for irreducible representations in finite groups.
The integrals can also be evaluated without knowledge of group theory. Here, we just point out that the δmm′ and
δkk′ follows directly from integration over the angles α and γ.

From Eq. (116) we know that Dj,∗
mk(α, β γ) transforms as |jm〉. For k = 0 (and thus, necessarily j = l is integer) we

define

Clm(θ, φ) = Dl,∗
m0(φ, θ, 0), (130)

which are spherical harmonics in Racah normalization. From Eq. (129) we find

∫ 2π

0

dφ

∫ π

0

sin θdθC∗
lm(θ, φ)Cl′m′(θ, φ) =

4π

2l + 1
δmm′δll′ . (131)

Thus, the relation with spherical harmonics in the standard normalization is

Ylm(θ, φ) =

√

2l + 1

4π
Clm(θ, φ). (132)
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Also setting m to zero gives us Legendre polynomials

Pl(cos θ) = dl
00(θ) = Cl0(θ, φ). (133)

We also define the regular harmonics,

Rlm(r) = rlClm(r̂), (134)

where rT = (x, y, z) = r(cosφ sin θ, sinφ sin θ, cos θ), and r̂ = (θ, φ). From the explicit formulas for D0 and D1 we find

R0,0(r) = 1 (135)

R1,1(r) = − 1√
2
(x+ iy) ≡ r+1 (136)

R1,0(r) = z ≡ r0 (137)

R1,−1(r) =
1√
2
(x− iy) ≡ r−1. (138)

The r+1, r0, and r−1 are the so called spherical components of the vector r. They are related to the Cartesian

components via the unitary transformation

r̃ ≡





r+
r0
r−



 =

√

1

2





−1 −i 0

0 0
√

2
1 −i 0









x
y
z



 ≡ ST r. (139)

We put in the transpose so that for row vectors we get r̃T = rTS. We now compare the rotation of the Cartesian and
the spherical components of a vector. In Cartesian coordinates we define

r ≡ R(n, φ)r′, ⇒ r′T = rTR(n, φ) (140)

and for the spherical components we find

R̂(n, φ)Rlm(r) = Rlm[R(n, φ)−1r] = Rlm(r′) =
∑

k

Rkm(r)Dl
km(n, φ). (141)

For l = 1 this gives r̃′T = r̃TD1(n, φ), so that

r̃′T = r′TS = rTRS = rTSD1, (142)

which gives

R = SD1S†. (143)

We recall that the components of an angular momentum operator transform as the Cartesian components of a row

vector [see Eq. (59)]. Thus, if we define Ĵ
(1)
µ =

∑

i ĴiSiµ, with µ = +1, 0,−1, i.e.,

Ĵ
(1)
+1 = −

√

1

2
(Ĵ1 + iĴ2) (144)

Ĵ
(1)
0 = Ĵ3 (145)

Ĵ
(1)
−1 =

√

1

2
(Ĵ1 − iĴ2) (146)

we obtain

R̂(n, φ)Ĵ (1)
m R̂(n, φ)† =

∑

k

Ĵ
(1)
k D1

km(n, φ). (147)
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III. VECTOR COUPLING

In quantum chemistry one usually writes a two electron wave function as, e.g., ψa(r1)ψb(r2)−ψa(r2)ψb(r1). When-
ever convenient, we will use tensor product notation where, by definition, we keep the order of the arguments fixed,
so that we can drop them, and we write ψa ⊗ ψb − ψb ⊗ ψa. For two linear spaces V1 and V2 with dimensions n1, n2,
the tensor product space V1 ⊗V2 is a n1 ×n2 dimensional linear space which contains the tensor products f ⊗ g, with
f ∈ V1 and g ∈ V2. For a complete definition me must point out when two elements of V1 ⊗ V2 are the same:

(λf) ⊗ g = f ⊗ (λg) = λ(f ⊗ g) (148)

(f + g) ⊗ h = f ⊗ h+ g ⊗ h (149)

f ⊗ (g + h) = f ⊗ g + f ⊗ h. (150)

For linear operators Â and B̂ defined on V1 and V2, respectively, we define

(Â⊗ B̂)(f ⊗ g) = (Âf) ⊗ (B̂g). (151)

Thus, (∇x + ∇y)f(x)g(y) written in tensor notation becomes (∇⊗ I + I ⊗∇)f ⊗ g.
The scalar product in the tensor product space is defined in terms of the scalar products on V1 and V2 by

(f1 ⊗ g1, f2 ⊗ g2) = (f1, f2)(g1, g2). (152)

If we have an orthonormal basis {ei, i = 1, . . . , n1} on V1 and an orthonormal basis {fi, i = 1, . . . , n2} then
ei ⊗ fj , i = 1, . . . , n1; j = 1, . . . , n2} forms an orthonormal basis for V1 ⊗ V2. Clearly, we have

(ei ⊗ fj , ei′ ⊗ fj′) = (ei, ei′)(fj , fj′) = δii′δjj′ . (153)

If the matrix elements Aij = (ei, Âej) and Bij = (fi, B̂fj) are known, we can easily compute the matrix elements of

the tensor product Â⊗ B̂ in the tensor product basis

(ei ⊗ fj , [Â⊗ B̂]ei′ ⊗ fj′) = (ei ⊗ fj , Âei′ ⊗ B̂fj′ ) = (ei, Âei′)(fj , B̂fj′ ) = Aii′Bjj′ . (154)

Let Âfi = λifi and B̂gj = µjgj, then

(Â⊗ Î + Î ⊗ B̂)(fi ⊗ gj) = Âfi ⊗ Îgj + Îfi ⊗ B̂gj = λifi ⊗ gj + µjfi ⊗ gj = (λi + µj)fi ⊗ gj, (155)

i.e., the functions fi ⊗ gj are eigenfunctions of the operator (Â⊗ Î + Î ⊗ B̂) with eigenvalues (λi + µj).
From the Taylor expansion of an exponential one can prove that, for scalars, ea+b = eaeb. Since functions of

operators are defined by the series expansion this relation also holds for operators that commute. It is readily verified
that the commutator

[Â⊗ Î , Î ⊗ B̂] = 0 (156)

and so we have

eÂ⊗Î+Î⊗B̂ = eÂ ⊗ eB̂. (157)

A. An irreducible basis for the tensor product space

Let us assume that Vj1 and Vj2 are spaces spanned by the bases {|j1,m1〉,m1 = −j1, . . . , j1} and {|j2,m2〉,m2 =
−j2, . . . , j2}, respectively. All that we need to construct an irreducible basis for the tensor product space is a set of
three Hermitian operators that satisfy the angular momentum commutation relations. It is not hard to verify that
the operators

Ĵi ≡ ĵi ⊗ 1̂ + 1̂ ⊗ ĵi, i = 1, 2, 3 (158)

satisfy these conditions. Since we have explicit expressions for the matrix elements of ĵi in the bases of Vj1 and Vj2

we can easily calculate the matrix elements of the operators Ĵi in the so called uncoupled basis

|j1m1j2m2〉 ≡ |j1m1〉 ⊗ |j2m2〉, m1 = −j1, . . . , j1; m2 = −j2, . . . , j2. (159)



15

We could then proceed by (e.g., numerically) diagonalizing the operator Ĵ2 = Ĵ2
1 + Ĵ2

2 + Ĵ2
3 to find the (2J + 1)

dimensional eigenspaces SJ of Ĵ2. Within each space SJ it should be possible to find an eigenfunction of Ĵ3 with
eigenvalue M = J . With the step down operator Ĵ− = Ĵ1 − iĴ2 we could then find the other eigenfunctions of Ĵ3.

We denote these simultaneous functions of Ĵ2 and Ĵ3 by |(j1j2)JM〉,M = −J, . . . , J , where the (j1j2) indicate that
it is a vector in the tensor product space.

We may expand these functions in the uncoupled basis

|(j1j2)JM〉 =

j1
∑

m1=−j1

j2
∑

m2=−j2

|j1m1j2m2〉CJM
m1m2

(j1j2). (160)

With the proper phase conventions the expansion coefficients are real and they are known as Clebsch-Gordan (CG)
coefficients. In Dirac notation they can be written as a scalar product 〈j1m1j2m2|(j1j2)JM〉 which is usually simplified
to 〈j1m1j2m2|JM〉.

It may not come as a surprise that we do not need a numeric diagonalization to find the eigenvalues of Ĵ2 and
the CG coefficients. First we point out that the uncoupled basis functions are already eigenfunctions of Ĵ3, with
eigenvalues M = m1 + m2. The largest eigenvalue that occurs is M = j1 + j2, corresponding to the eigenvector
|j1j1j2j2〉. Thus, there must be an invariant subspace SJ with J = j1 + j2. This must be the largest possible value

of J , since otherwise a larger eigenvalue of Ĵ3 would occur. For M = J − 1 there is a two-dimensional space of
eigenfunctions of Ĵ3, spanned by the functions |j1j1j2j2 − 1〉 and |j1j1 − 1j2j2〉. We know that the space SJ contains
precisely one eigenfunction |(j1j2)JJ − 1〉, so the other component of the two-dimensional space must necessarily be
an element of SJ−1. If we carefully continue this procedure we find that each space SJ must occur exactly once and
that J = j1 + j2, j1 + j2 − 1, . . . , |j1 − j2|. It is left as an exercise for the reader to verify that if we add up the
dimensions of the spaces SJ we get (2j1 + 1)(2j2 + 1), i.e., the dimension of Vj1 ⊗ Vj2 . Thus, the coupled basis for
Vj1 ⊗ Vj2 consists of the functions

|(j1j2)JM〉, J = |j1 − j2|, . . . , j1 + j2, M = −J, . . . , J. (161)

The CG coefficients are the matrix elements of the orthogonal matrix that transforms between the uncoupled and the
coupled basis, thus we have the following orthogonality relations

∑

m1,m2

〈JM |j1m1j2m2〉〈j1m1j2m2|J ′M ′〉 = δJJ′δMM ′ (162)

∑

J,M

〈j1m1j2m2|JM〉〈JM |j1m′
1j2m

′
2〉 = δm1m′

1
δm2m′

2
(163)

and we may invert Eq. (160)

|j1m1j2m2〉 =

j1+j2
∑

J=|j1|−|j2|

J
∑

M=−J

|(j1j2)JM〉〈JM |j1m1j2m2〉. (164)

Recursion relations for the CG coefficients can be obtained by applying the step up/down operators to Eq. (160).
On the left hand side we get

Ĵ±|(j1j2)JM〉 = |(j1j2)JM ± 1〉C±
JM (165)

=
∑

m1m2

|j1m1〉|j2m2〉〈j1m1j2m2|JM ± 1〉C±
JM (166)

and on the right hand side

∑

m1m2

Ĵ±|j1m1〉|j2m2〉〈j1m1j2m2|JM〉 (167)

=
∑

m1m2

[

|j1m1 ± 1〉|j2m2〉C±
j1m1

+ |j1m1〉|j2m2 ± 1〉C±
j2m2

]

〈j1m1j2m2|JM〉 (168)

=
∑

m1m2

|j1m1〉|j2m2〉
[

C±
j1m1∓1〈j1m1 ∓ 1j2m2|JM〉 + C±

j2m2∓1〈j1m1j2m2 ∓ 1|JM〉
]

. (169)
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In the last step we used
∑

m1

|j1m1 ± 1〉C±
j1,m1

=
∑

m1

|j1m1〉C±
j1,m1∓1, (170)

which is correct, assuming the range of summation is alway chosen to include all allowed m1 values. Combining Eqs.
166 and 169 we obtain the recursion relations

C±
JM 〈j1m1j2m2|JM ± 1〉 = C±

j1m1∓1〈j1m1 ∓ 1j2m2|JM〉 + C±
j2m2∓1〈j1m1j2m2 ∓ 1|JM〉. (171)

For the upper sign with M = J we get

0 = C+
j1m1−1〈j1m1 − 1j2m2|JJ〉 + C+

j2m2−1〈j1m1j2m2 − 1|JJ〉. (172)

By convention we take 〈j1, j1, j2, J − j1|J, J〉 real and positive. After normalization according to Eq. (162) this fixes
〈j1m1j2m2|JJ〉. The other values |JM〉 elements are obtained by using the lower sign. For J = M = 0 this procedure
gives

〈j1m1j2m2|00〉 =
(−1)j1−m1

√
2j1 + 1

δj1j2δm1,−m2
. (173)

It is straightforward to construct an irreducible basis in a higher dimensional tensor product space. E.g., in
Vj1 ⊗ Vj2 ⊗ Vj3

|[(j1j2)j3]JM〉 ≡
∑

m1m2m3m4

|j1m1〉|j2m2〉|j3m3〉〈j1m1j2m2|j4m4〉〈j4m4j3m3|JM〉. (174)

transforms like |JM〉. For |JM〉 = |00〉 and substituting Eq. (173) we construct a so called invariant function

∑

m1m2m3

|j1m1〉|j2m2〉|j3m3〉〈j1m1j2m2|j3 −m3〉
(−1)j3+m3

√
2j1 + 1

. (175)

This motivates the definition of the 3jm−symbol
(

j1 j2 j3
m1 m2 m3

)

≡ (−1)j1−j2−m3

√
2j3 + 1

〈j1m1j2m2|j3 −m3〉. (176)

The phase convention makes the symmetry properties of the 3j symbol particularly simple: permuting two columns
or changing all the mi to −mi gives an extra factor (−1)j1+j2+j3 . Thus, cyclic permutations of the columns leave the
3j unchanged.

(

j1 j2 j3
m1 m2 m3

)

= (−1)j1+j2+j3

(

j1 j2 j3
−m1 −m2 −m3

)

= (−1)j1+j2+j3

(

j2 j1 j3
m2 m1 m3

)

(177)

etc. From the inverse relation

〈j1m1j2m2|j3m3〉 = (−1)j1−j2+m3

√

2j3 + 1

(

j1 j2 j3
m1 m2 m3

)

(178)

one can find how awkward the corresponding symmetry relations for CG coefficients are. Of course, a rigorous
derivation of these symmetry relations must start from the recursion relations of the CG coefficients.

B. The rotation operator in the tensor product space

The rotation operator in Vj1 ⊗ Vj2 is given by

R̂(n, φ) = e−iφnĴ (179)

and when operating on the coupled basis functions it gives

R̂|(j1j2)JM〉 =
∑

K

|(j1j2)JK〉DJ
KM (R̂) (180)

=
∑

k1k2

|j1k1〉|j2k2〉
∑

K

〈j1k1j2k2|JK〉DJ
KM (R̂). (181)
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Using the rules for manipulating tensor products of operators derived above we find

e−iφn·Ĵ = e−iφn·ĵ1 ⊗ e−iφn·ĵ2 , (182)

which we may write symbolically as R̂ = R̂⊗ R̂. Thus, the uncoupled basis functions rotate as

(R̂⊗ R̂)|j1m1〉|j2m2〉 =
∑

k1k2

|j1k1〉|j2k2〉Dj1
k1m1

(R̂)Dj2
k2m2

(R̂). (183)

Together with Eq. (164) this gives

Dj1
k1m1

(R̂)Dj2
k2m2

(R̂) =
∑

JKM

〈j1k1j2k2|JK〉〈j1m1j2m2|JM〉DJ
KM (R̂). (184)

This is a remarkable useful equation. E.g., it allows us to verify the orthogonality relations Eq. (129) and to find

∫ 2π

0

dα

∫ π

0

sinβdβ

∫ 2π

0

dγ DJ,∗
MK(α, β, γ)Dj1

m1k1
(α, β, γ)Dj2

m2k2
(α, β, γ) =

8π2

2J + 1
〈j1m1j2m2|JM〉〈j1k1j2k2|JK〉.

(185)
If we take the complex conjugate, set K = k1 = k2 = 0, and eliminate the integral over the third Euler angle, we find

∫ 2π

0

dφ

∫ π

0

sin θdθC∗
LM (φ, θ)Cl1m1

(θ, φ)Cl2m2
(θ, φ) =

4π

2L+ 1
〈l1m1l2m2|LM〉〈l10l20|L0〉. (186)

We also may derive the recursion relation for Legendre polynomials from the explicit expressions for dj with z ≡ cosβ

P0(z) = 1 (187)

P1(z) = z. (188)

From Eq. (184) with m = k = 0 and j1 = 1 and j2 = l we derive a recursion relation for the Legendre polynomials

P1(z)Pl(z) =
∑

L

〈10l0|L0〉2PL(z) (189)

= 〈10l0|l+ 1, 0〉2Pl+1(z) + 〈10l0|l− 1, 0〉2Pl−1(z) (190)

=
l + 1

2l+ 1
Pl+1(z) +

l

2l+ 1
Pl−1(z), (191)

i.e.,

Pl+1(z) =
z(2l+ 1)Pl(z) − lPl−1(z)

l + 1
(192)

P2(z) =
3z2 − 1

2
. (193)

Suppose the angular part of a wave function is given by

Ψ(θ, φ) =
∑

lm

almClm(θ, φ) (194)

and we are interested in the spatial distribution

P (θ, φ) = |Ψ(θ, φ))|2 =
∑

l1m1l2m2

a∗l1m1
al2m2

C∗
l1m1

(θ, φ)Cl2m2
(θ, φ). (195)

First, from Eqs. (128) and (130) we find

C∗
lm(θ, φ) = (−1)mCl,−m(θ, φ). (196)

From Eq. (184) we have

(−1)m1Cl1−m1
(r̂)Cl2m2

(θ, φ) = (−1)m
∑

LM

〈l1,−m1, l2,m2|LM〉〈l10l20|L0〉CLM (θ, φ) (197)



18

thus,

P (θ, φ) =
∑

l1l2m1m2LM

a∗l1m1
al2,m2

(−1)m〈l1,−m1, l2,m2|L0〉〈l10l20|LM〉CLM(θ, φ). (198)

For a pure state, Ψ(θ, φ) = Clm(θ, φ)

P (θ, φ) =
∑

LM

|alm|2(−1)m〈l,−m, l,m|LM〉〈l0l0|L0〉CLM(θ, φ) (199)

=
∑

L

|alm|2(−1)m〈l,−m, l,m|L0〉〈l0l0|L0〉PL(cos θ). (200)

It follows from the triangular conditions for 〈l0l0|L0〉 that L runs from 0 to 2l. Furthermore, a CG coefficient is zero
if all the m’s are zero and the sum of the l’s is odd (prove this using Eq. (176) and the symmetry properties of 3jm
symbols) so L must be even.

C. Application to photo-absorption and photo-dissociation

The transition amplitude in a one-photon electric dipole transition between two states is proportional to the matrix
elements of the operator T̂ = e · µ, where e is the polarization vector of the photon and µ is the dipole operator. A
scalar product can be written in spherical coordinates

e · µ =
∑

m

(−1)me
(1)
−mµ

(1)
m = −

√
3

∑

m

e
(1)
−mµ

(1)
m .〈1−m1m|00〉 (201)

The spherical components of the dipole operator for a one-particle system are

µ(1)
m (r) = qR1m(r) = qrC1m(r̂). (202)

The matrix elements of T̂ in the basis Ψnlm(r) = fnl(r)Clm(r̂) are

〈Ψn1l1m1
|T̂ |Ψn2l2m2

〉 =
∑

m

(−1)me
(1)
−m

∫

dr̂C∗
l1m1

(r̂)C1m(r̂)Cl2m2
(r̂)

∫

r2drf∗
n1l1

(r)qrfn2 l2(r) (203)

=
∑

m

(−1)me−mAn1l1n2l2〈l1m11m|l2m2〉〈l1010|l20〉. (204)

For simplicity we assume that one component of e is 1, and the others 0. Since we want to focus on the angular part
of the problem, we drop the n quantum numbers and also we absorb the factor 〈l1010|l20〉 into Al1l2 , so that we get

〈l1m1|T̂ |l2m2〉 = Al1l2〈l1m11m|l2m2〉. (205)

Thus, we can write the (angular part of) the operator T̂ as

T̂ =
∑

l1m1l2m2

Al1l2 |l1m1〉〈l2m2|〈l1m11m|l2m2〉. (206)

D. Density matrix formalism

A quantum mechanical system can be completely described by its density operator

ρ̂ =
∑

i

|Ψi〉pi〈Ψi|, (207)

where the pi are the probabilities of the system being in the state |Ψi〉. To every observable some Hermitian operator

Â corresponds and the mean result of a measurement of this quantity is given by

〈Â〉 ≡ Tr(ρ̂Â) =
∑

ji

〈j|Ψi〉pi〈Ψi|Â|j〉 =
∑

ji

pi〈Ψi|Â|j〉〈j|Ψi〉 =
∑

i

pi〈Ψi|Â|Ψi〉. (208)
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For example, measuring an angular probability distribution, as in the example above, corresponds to taking Â = |r̂〉〈r̂|,
which gives

A(r) =
∑

pi〈Ψi|r̂〉〈r̂|Ψi〉 =
∑

i

pi|Ψi(r̂)|2. (209)

A photoabsorption experiment is described by Â =
∑

f T̂ |Ψf 〉〈Ψf |T̂ which gives

Â =
∑

pi〈Ψi|
∑

f

T̂ |Ψf〉〈Ψf |T̂ |Ψi〉 =
∑

i,f

pi|〈Ψf |T̂ |Ψi〉|2. (210)

To determine an angular distribution after photo-excitation we take

Â(r̂) = T̂ P̂ |r̂〉〈r̂|P̂ T̂ with P̂ =
∑

f

|Ψf 〉〈Ψf |, (211)

which gives

A(r̂) =
∑

i,f

pi|Ψf (r̂)|2|〈Ψf |T̂ |Ψ〉i|2. (212)

Thus, in any case we need to evaluate Tr(ρ̂Â) = Tr(ρ̂†Â), since ρ̂ is Hermitian.

E. The space of linear operators

Let |i〉 be an orthonormal basis in V , i.e., 〈i|j〉 = δij . In Dirac notation, any linear operator can be written as

Â =
∑

ij

Aij |i〉〈j|. (213)

Indeed, for the matrix elements we get

〈k|Â|l〉 = 〈k|
∑

ij

Aij |i〉〈j|l〉 = Akl. (214)

Thus we may think of

T̂ij ≡ |i〉〈j| (215)

as a “basis function” for the space of linear of operators, and of the matrix element Aij as an expansion coefficient.

We define the “scalar product” between operators Â and B̂ as the trace of Â†B̂, since that gives

Tr(Â†B̂) =
∑

ij

〈j|Â†|i〉〈i|B̂|j〉 =
∑

ij

A∗
ijBij , (216)

completely analogous to (x,y) =
∑

i x
∗
i yi. We also have

Aij = Tr(T̂ †
ijÂ) (217)

and

Tr(T̂ †
ij T̂i′j′ ) = δii′δjj′ . (218)

Furthermore

Tr(Â†B̂) = Tr(B̂†Â)∗. (219)

and

T̂ †
ij = |j〉〈i| = T̂ji. (220)

A basis transformation |i〉′ = R̂|i〉 gives

T̂ ′
ij ≡ |i〉′ ′〈j| = R̂T̂ijR̂

†. (221)

One can easily verify that if R̂ is a unitary transformation on V , then T̂ ′
ij is again an orthonormal basis, i.e.,

Tr(T̂ ′†
ij

ˆT ′
i′j′ ) = δijδi′j′ . Note that one may also think of T̂ij as an element of V ⊗ V∗.
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IV. ROTATING IN THE DUAL SPACE

The dual space V∗ associated with the vector space V is the linear space of linear functionals on V . A linear
functional is a linear mapping of V onto R or C. Every linear functional can be defined as “taking the scalar product
with some vector”. The dimension of V∗ is the same as the dimension of V and the dual of V∗ is V . In other words,
the dual space is simply the space where the Dirac bra’s live. If we have a basis {|jm〉,m = −j, . . . , j} in V , then
{〈jm|,m = −j, . . . , j} is a basis in V∗, which we call the dual basis. Hermitian conjugation takes us back and forth

between V and V∗, |jm〉† = 〈jm|, 〈j1m1|j2m2〉 ≡ δj1j2δm1m2
, hence (|jm〉c)† = 〈jm|c∗.

Rotating the basis functions in V gives

|jm〉′ ≡ R̂|jm〉 =
∑

k

|jk〉Dj
km(R̂), (222)

where we used Eq. (128). By taking the Hermitian conjugate we find for the transformation of the dual basis

′〈jm| ≡ 〈jm|R̂† =
∑

k

〈jk|Dj,∗
km(R̂) =

∑

k

〈jk|(−1)k−mDj
−k,−m(R̂) (223)

We notice two things. First, if we rotate the basis in V with R̂ then the dual basis rotates with R̂†. Second, the
complex conjugate of the D matrix appears. We now try to find an alternative basis in the dual space that we can
rotate with the D-matrix, instead of its complex conjugate. First we by multiply both sides of the equation with
(−1)j+m

(−1)j+m〈jm|R̂† =
∑

k

(−1)j+k〈jk|Dj
−k,−m(R̂) (224)

and then we change the signs of m and k

(−1)j,−m〈j,−m|R̂† =
∑

k

(−1)j−k〈j−k|Dj
km(R̂). (225)

The reason that we multiply with (−1)j,−m, rather than simply (−1)m is that the former is also well defined if j is

half integer (for (−1)
1

2 one could take i as well as −i). In any case, we can now define an alternative basis for the
dual space

〈jm| ≡ (−1)j−m〈j,−m| (226)

that rotates as

〈jm|R̂† =
∑

k

〈jk|Dj
km(R̂). (227)

We also introduce

|jm〉 = (−1)j−m|j,−m〉, (228)

which is a function in V that rotates like 〈jm|

R̂|jm〉 =
∑

k

|jk〉Dj,∗
km(R̂). (229)

We may use the m notation whenever convenient, e.g.

〈j1m1j2m2|JM〉 = (−1)j2−m2〈j1,m1, j2,−m2|JM〉. (230)

We note that the so called time reversal operator Θ̂ is defined as

Θ̂|jm〉 = |jm〉. (231)

We will not use this operator, but we just point out that it is defined to be anti linear

Θ̂λ|Ψ〉 ≡ λ∗Θ̂|Ψ〉. (232)
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A. Tensor operators

We recall Eq. (180), where we inserted the resolution of identity,

(R̂ ⊗ R̂)
∑

m1m2

|j1m1〉|j2m2〉〈j1m1j2m2|JM〉 =
∑

m1m2k1k2

|j1k1〉|j2k2〉Dj1
k1m1

(R̂)Dj2
k2m2

(R̂)〈j1m1j2m2|JM〉 (233)

=
∑

K

[

∑

k1k2

|j1k1〉|j2k2〉〈j1k1j2k2|JK〉
]

DJ
KM (R̂). (234)

This suggest the definition of the operator

T̂JM (j1j2) =
∑

m1m2

|j1m1〉〈j2m2|〈j1m1j2m2|JM〉, (235)

which rotates exactly like a |JM〉. Completely analogous to Eq. (233) we find

T̂BF
JM (j1j2) ≡ R̂T̂JM (j1j2)R̂

† (236)

=
∑

m1m2

R̂|j1m1〉〈j2m2|R̂†〈j1m1j2m2|JM〉 (237)

=
∑

m1m2k1k2

|j1k1〉〈j2k2|Dj1
k1m1

(R̂)Dj2
k2m2

(R̂)〈j1m1j2m2|JM〉 (238)

=
∑

K

∑

k1k2

|j1k1〉〈j2k2|〈j1k1j2k2|JK〉DJ
KM (R̂) (239)

=
∑

K

T̂JK(j1j2)D
J
KM (R̂). (240)

The operators |j1m1〉〈j2m2| constitute an orthonormal operator basis since

Tr([|j1m1〉〈j2m2|]† |j′1m′
1〉〈j′2m′

2|) = δj1j′
1
δj2j′

2
δm1m′

1
δm2m′

2
(241)

and from the orthogonality relations of the CG coefficients we find

Tr(T̂JM (j1j2)
†T̂J′M ′(j′1j

′
2) =

∑

m1m2

〈j1m1j2m2|JM〉〈j1m1j2m2|J ′M ′〉 = δJJ′δMM ′δj1j′
1
δj2j′

2
. (242)

Thus, if we expand the operators Â and B̂ as

Â =
∑

JMj1j2

AJM (j1j2)T̂JM (j1j2) (243)

B̂ =
∑

JMj1j2

BJM (j1j2)T̂JM (j1j2) (244)

we find for the scalar product

Tr(Â†B̂) =
∑

JMj1j2

A∗
JM (j1j2)BJM (j1j2). (245)

This is our main result. The outcome of any experiment can be written as

Tr(ρ̂†T̂ ) =
∑

JMj1j2

ρ∗JM (j1j2)TJM (j1j2) (246)

Since the components of T are known for a given experiment, this equation shows immediately what information
about the system, i.e., the density matrix ρ̂ we can obtain.

Any operator that can be written as

ÂJM =
∑

j1j2

aj1j2 T̂JM (j1j2) (247)
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is called an irreducible tensor operator. It rotates like

R̂ÂJM R̂† =
∑

K

ÂJKD
J
KM (R̂) (248)

and its matrix elements are

〈jm|ÂJM |jm′〉 = ajj′ (
√

2J + 1)(−1)j−m

(

j J j′

−m M m′

)

(249)

This result is known as the Wigner-Eckart theorem. The coefficient ajj′ is called the reduced matrix element and it

is often written as 〈j||Â||j′〉.
Gerrit C. Groenenboom, Nijmegen, November 1999

Appendix A: exercises

1. Derive the second equality sign in Eq. (22).

2. Show that N3 = −N (Eq. 41).

3. Do the summation in Eq. (44).

4. Show that e−iαp̂|x〉, is an eigenfunction of x̂, using only the definition x̂|x〉 = x|x〉 and the assumption that x̂
and p̂ are Hermitian operators with the commutation relation [x̂, p̂] = i. What is the eigenvalue?

5. Derive the following relations for the Levi-Civita tensor (Eq. 68)

eijkeij′k′ = δjj′δkk′ − δjk′δkj′ (250)

eijkeijk′ = 2δkk′ (251)

eijkeijk = 6, (252)

where we used Einstein summation convention: summation over repeated indices is implicit.

6. Show that

x × (y × z) = (x, z)y − (x,y)z. (253)

7. Using the last equation verify Eq. (64).

8. Derive Eq. (51). Hint: work out det(U [xyz]) in two ways, or use the Levi-Civita tensor.

9. Show that

B(t) = etABe−tA (254)

satisfies the equation

B(0) = B,
d

dt
B(t) = [A,B(t)] (255)

and therefore

B(t) = B +

∫ t

0

dτ [A,B(τ)]. (256)

Solve the last equation by iteration to derive Eq. (60)

10. Show that
∑j1+j2

J=|j1−j2|(2J + 1) = (2j1 + 1)(2j2 + 1). Hint: draw a grid of points (m1,m2) with mi = −ji . . . ji.

11. Compute the d
1

2 (β) matrix [Eq. (121)].


